{"title":"FPGA硬件实现q -学习算法的低资源消耗","authors":"Xiaojuan Liu, Jietao Diao, Nan Li","doi":"10.1145/3549179.3549181","DOIUrl":null,"url":null,"abstract":"Q-learning is a kind of reinforcement learning, having a wide range of applications varying in different fields. However, in some circumstances like robot control which has shorter training time requirement, Q-learning algorithm implemented on GPU or CPU may not meet the requirement. In this paper, we proposed a novel serial acceleration architecture for Q-learning algorithm and implemented the architecture on xczu7ev-ffvc1156 FPGA using Vivado 2019.1 development environment. As a result, the resource consumption is reduced by about 50% compared with the architecture proposed in [1],and the update cycle of Q-learning algorithm is fixed to 4 clock cycles.","PeriodicalId":105724,"journal":{"name":"Proceedings of the 2022 International Conference on Pattern Recognition and Intelligent Systems","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA hardware implementation of Q-learning algorithm with low resource consumption\",\"authors\":\"Xiaojuan Liu, Jietao Diao, Nan Li\",\"doi\":\"10.1145/3549179.3549181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Q-learning is a kind of reinforcement learning, having a wide range of applications varying in different fields. However, in some circumstances like robot control which has shorter training time requirement, Q-learning algorithm implemented on GPU or CPU may not meet the requirement. In this paper, we proposed a novel serial acceleration architecture for Q-learning algorithm and implemented the architecture on xczu7ev-ffvc1156 FPGA using Vivado 2019.1 development environment. As a result, the resource consumption is reduced by about 50% compared with the architecture proposed in [1],and the update cycle of Q-learning algorithm is fixed to 4 clock cycles.\",\"PeriodicalId\":105724,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Pattern Recognition and Intelligent Systems\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Pattern Recognition and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549179.3549181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Pattern Recognition and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549179.3549181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FPGA hardware implementation of Q-learning algorithm with low resource consumption
Q-learning is a kind of reinforcement learning, having a wide range of applications varying in different fields. However, in some circumstances like robot control which has shorter training time requirement, Q-learning algorithm implemented on GPU or CPU may not meet the requirement. In this paper, we proposed a novel serial acceleration architecture for Q-learning algorithm and implemented the architecture on xczu7ev-ffvc1156 FPGA using Vivado 2019.1 development environment. As a result, the resource consumption is reduced by about 50% compared with the architecture proposed in [1],and the update cycle of Q-learning algorithm is fixed to 4 clock cycles.