非受控场景下的分辨率不变人脸识别

Dan Zeng, Hu Chen, Qijun Zhao
{"title":"非受控场景下的分辨率不变人脸识别","authors":"Dan Zeng, Hu Chen, Qijun Zhao","doi":"10.1109/ICB.2016.7550087","DOIUrl":null,"url":null,"abstract":"Face images captured by surveillance cameras usually have poor quality, particularly low resolution (LR), which affects the performance of face recognition seriously. In this paper, we develop a novel approach to address the problem of matching a LR face image against a gallery of relatively high resolution (HR) face images. Existing methods deal with such cross-resolution face recognition problem either by importing the information of HR images to help synthesize HR images from LR images or by applying the discrimination of HR images to help search for a unified feature space. Instead, we treat the discrimination information of HR and LR face images equally to boost the performance. The proposed approach learns resolution invariant features aiming to: (1) classify the identity of both LR and HR face images accurately, and (2) preserve the discriminative information among subjects across different resolutions. We conduct experiments on databases of uncontrolled scenarios, i.e., SCface and COX, and results show that the proposed approach significantly outperforms state-of-the-art methods.","PeriodicalId":308715,"journal":{"name":"2016 International Conference on Biometrics (ICB)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Towards resolution invariant face recognition in uncontrolled scenarios\",\"authors\":\"Dan Zeng, Hu Chen, Qijun Zhao\",\"doi\":\"10.1109/ICB.2016.7550087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face images captured by surveillance cameras usually have poor quality, particularly low resolution (LR), which affects the performance of face recognition seriously. In this paper, we develop a novel approach to address the problem of matching a LR face image against a gallery of relatively high resolution (HR) face images. Existing methods deal with such cross-resolution face recognition problem either by importing the information of HR images to help synthesize HR images from LR images or by applying the discrimination of HR images to help search for a unified feature space. Instead, we treat the discrimination information of HR and LR face images equally to boost the performance. The proposed approach learns resolution invariant features aiming to: (1) classify the identity of both LR and HR face images accurately, and (2) preserve the discriminative information among subjects across different resolutions. We conduct experiments on databases of uncontrolled scenarios, i.e., SCface and COX, and results show that the proposed approach significantly outperforms state-of-the-art methods.\",\"PeriodicalId\":308715,\"journal\":{\"name\":\"2016 International Conference on Biometrics (ICB)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Biometrics (ICB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICB.2016.7550087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Biometrics (ICB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICB.2016.7550087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

监控摄像机采集到的人脸图像通常质量较差,尤其是低分辨率,严重影响了人脸识别的性能。在本文中,我们开发了一种新的方法来解决LR人脸图像与相对高分辨率(HR)人脸图像库的匹配问题。现有方法处理这种交叉分辨率人脸识别问题,要么是通过导入HR图像信息来帮助从LR图像合成HR图像,要么是利用HR图像的判别来帮助搜索统一的特征空间。相反,我们平等地对待HR和LR人脸图像的识别信息,以提高性能。该方法学习分辨率不变特征的目的是:(1)准确分类LR和HR人脸图像的身份;(2)在不同分辨率下保持受试者之间的判别信息。我们在非受控场景的数据库(即SCface和COX)上进行了实验,结果表明所提出的方法明显优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards resolution invariant face recognition in uncontrolled scenarios
Face images captured by surveillance cameras usually have poor quality, particularly low resolution (LR), which affects the performance of face recognition seriously. In this paper, we develop a novel approach to address the problem of matching a LR face image against a gallery of relatively high resolution (HR) face images. Existing methods deal with such cross-resolution face recognition problem either by importing the information of HR images to help synthesize HR images from LR images or by applying the discrimination of HR images to help search for a unified feature space. Instead, we treat the discrimination information of HR and LR face images equally to boost the performance. The proposed approach learns resolution invariant features aiming to: (1) classify the identity of both LR and HR face images accurately, and (2) preserve the discriminative information among subjects across different resolutions. We conduct experiments on databases of uncontrolled scenarios, i.e., SCface and COX, and results show that the proposed approach significantly outperforms state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信