学习熵新颖性检测:一种自适应滤波器的认知方法

I. Bukovský, C. Oswald, Matous Cejnek, P. Benes
{"title":"学习熵新颖性检测:一种自适应滤波器的认知方法","authors":"I. Bukovský, C. Oswald, Matous Cejnek, P. Benes","doi":"10.1109/SSPD.2014.6943329","DOIUrl":null,"url":null,"abstract":"This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.","PeriodicalId":133530,"journal":{"name":"2014 Sensor Signal Processing for Defence (SSPD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Learning entropy for novelty detection a cognitive approach for adaptive filters\",\"authors\":\"I. Bukovský, C. Oswald, Matous Cejnek, P. Benes\",\"doi\":\"10.1109/SSPD.2014.6943329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.\",\"PeriodicalId\":133530,\"journal\":{\"name\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2014.6943329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2014.6943329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文回顾了学习熵(LE)用于新颖性检测的实际计算,将其扩展到各种梯度技术,并讨论了它在具有区分数据扰动或系统函数扰动能力的多变量动态系统中的应用。LG最近通过多项式滤波器的监督增量学习,即高阶神经单元(HONU),引入了时间序列的新颖性检测。本文还介绍了LG在HONU中采用和总结的增强梯度下降自适应技术。另外,提出了一种新的自适应滤波器性能指标LG。然后,我们讨论了HONU的主成分分析和核主成分分析作为一种潜在的方法来抑制数据测量扰动的检测,并对系统摄动新颖性强制LG。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning entropy for novelty detection a cognitive approach for adaptive filters
This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信