{"title":"学习熵新颖性检测:一种自适应滤波器的认知方法","authors":"I. Bukovský, C. Oswald, Matous Cejnek, P. Benes","doi":"10.1109/SSPD.2014.6943329","DOIUrl":null,"url":null,"abstract":"This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.","PeriodicalId":133530,"journal":{"name":"2014 Sensor Signal Processing for Defence (SSPD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Learning entropy for novelty detection a cognitive approach for adaptive filters\",\"authors\":\"I. Bukovský, C. Oswald, Matous Cejnek, P. Benes\",\"doi\":\"10.1109/SSPD.2014.6943329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.\",\"PeriodicalId\":133530,\"journal\":{\"name\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Sensor Signal Processing for Defence (SSPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSPD.2014.6943329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Sensor Signal Processing for Defence (SSPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSPD.2014.6943329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Learning entropy for novelty detection a cognitive approach for adaptive filters
This paper recalls the practical calculation of Learning Entropy (LE) for novelty detection, extends it for various gradient techniques and discusses its use for multivariate dynamical systems with ability of distinguishing between data perturbations or system-function perturbations. LG has been recently introduced for novelty detection in time series via supervised incremental learning of polynomial filters, i.e. higher-order neural units (HONU). This paper demonstrates LG also on enhanced gradient descent adaptation techniques that are adopted and summarized for HONU. As an aside, LG is proposed as a new performance index of adaptive filters. Then, we discuss Principal Component Analysis and Kernel PCA for HONU as a potential method to suppress detection of data-measurement perturbations and to enforce LG for system-perturbation novelties.