图像水印技术的最大似然解码器

Preeti Sharma
{"title":"图像水印技术的最大似然解码器","authors":"Preeti Sharma","doi":"10.1109/ISPCC53510.2021.9609406","DOIUrl":null,"url":null,"abstract":"The paper extends a general approach for extracting the watermark using a mathematical technique for watermarking using Discrete Wavelet Transform (DWT). Though the watermark may be inserted using quantization or a combination of other transforms, yet the successful recovery of watermarks is a difficult task. It is indeed a challenge for the decoder to recover the watermark when various attacks are applied upon a watermarked image. The corresponding scheme of watermark decoding uses the principle of Maximum Likelihood (ML) estimation and is based upon the statistical modeling of parameters of Gaussian distribution. The watermarking experiments utilizing ML decoder exhibit improved performances over the conventional approaches of watermarking employing correlation detectors. The robustness of such techniques is verified through the values of Bit Error Rate (%).","PeriodicalId":113266,"journal":{"name":"2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Maximum Likelihood Decoder For Image Watermarking Techniques\",\"authors\":\"Preeti Sharma\",\"doi\":\"10.1109/ISPCC53510.2021.9609406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper extends a general approach for extracting the watermark using a mathematical technique for watermarking using Discrete Wavelet Transform (DWT). Though the watermark may be inserted using quantization or a combination of other transforms, yet the successful recovery of watermarks is a difficult task. It is indeed a challenge for the decoder to recover the watermark when various attacks are applied upon a watermarked image. The corresponding scheme of watermark decoding uses the principle of Maximum Likelihood (ML) estimation and is based upon the statistical modeling of parameters of Gaussian distribution. The watermarking experiments utilizing ML decoder exhibit improved performances over the conventional approaches of watermarking employing correlation detectors. The robustness of such techniques is verified through the values of Bit Error Rate (%).\",\"PeriodicalId\":113266,\"journal\":{\"name\":\"2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPCC53510.2021.9609406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPCC53510.2021.9609406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文利用离散小波变换(DWT)的数学水印技术,对一般的水印提取方法进行了扩展。虽然可以使用量化或结合其他变换插入水印,但水印的成功恢复是一项艰巨的任务。当对水印图像施加各种攻击时,如何恢复水印对解码器来说确实是一个挑战。相应的水印解码方案采用最大似然估计原理,并基于高斯分布参数的统计建模。使用ML解码器的水印实验比使用相关检测器的传统水印方法表现出更高的性能。通过误码率(%)的数值验证了这些技术的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum Likelihood Decoder For Image Watermarking Techniques
The paper extends a general approach for extracting the watermark using a mathematical technique for watermarking using Discrete Wavelet Transform (DWT). Though the watermark may be inserted using quantization or a combination of other transforms, yet the successful recovery of watermarks is a difficult task. It is indeed a challenge for the decoder to recover the watermark when various attacks are applied upon a watermarked image. The corresponding scheme of watermark decoding uses the principle of Maximum Likelihood (ML) estimation and is based upon the statistical modeling of parameters of Gaussian distribution. The watermarking experiments utilizing ML decoder exhibit improved performances over the conventional approaches of watermarking employing correlation detectors. The robustness of such techniques is verified through the values of Bit Error Rate (%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信