Д.В. Назаров, А.А. Леонова, А.О. Межова, Н.Е. Поданев, Е.Д. Агафонов
{"title":"深度学习方法在油气井段油藏自动采油中的应用","authors":"Д.В. Назаров, А.А. Леонова, А.О. Межова, Н.Е. Поданев, Е.Д. Агафонов","doi":"10.36622/vstu.2022.87.1.016","DOIUrl":null,"url":null,"abstract":"Статья посвящена решению задачи автоматического поиска интервалов коллекторов по данным геофизических исследований скважин (ГИС) нефтяных и газовых месторождений. Cоздана система распознавания типа коллектора, позволяющая достичь средней точности на тестовой выборке 92,2%.\n The article is devoted to solving the problem of automatic search of reservoir intervals according to geophysical well surveys (GIS) of oil and gas fields. This article proposes an algorithm that allows to automate the allocation of collector zones using deep-learning neural network technologies. As a result, based on the data obtained from a group of wells of an oil field located in the Krasnoyarsk Territory, a reservoir type recognition system was created that allows achieving an average accuracy of 92.2% on a test sample.","PeriodicalId":331043,"journal":{"name":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"APPLICATION OF DEEP LEARNING METHODS FOR AUTOMATIC RECOVERY OF RESERVOIRS IN THE SECTION OF OIL AND GAS WELLS\",\"authors\":\"Д.В. Назаров, А.А. Леонова, А.О. Межова, Н.Е. Поданев, Е.Д. Агафонов\",\"doi\":\"10.36622/vstu.2022.87.1.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Статья посвящена решению задачи автоматического поиска интервалов коллекторов по данным геофизических исследований скважин (ГИС) нефтяных и газовых месторождений. Cоздана система распознавания типа коллектора, позволяющая достичь средней точности на тестовой выборке 92,2%.\\n The article is devoted to solving the problem of automatic search of reservoir intervals according to geophysical well surveys (GIS) of oil and gas fields. This article proposes an algorithm that allows to automate the allocation of collector zones using deep-learning neural network technologies. As a result, based on the data obtained from a group of wells of an oil field located in the Krasnoyarsk Territory, a reservoir type recognition system was created that allows achieving an average accuracy of 92.2% on a test sample.\",\"PeriodicalId\":331043,\"journal\":{\"name\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36622/vstu.2022.87.1.016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"СИСТЕМЫ УПРАВЛЕНИЯ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36622/vstu.2022.87.1.016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Статья посвящена решению задачи автоматического поиска интервалов коллекторов по данным геофизических исследований скважин (ГИС) нефтяных и газовых месторождений.Cоздана система распознавания типа коллектора, позволяющая достичь средней точности на тестовой выборке 92,2%.本文致力于解决根据油气田地球物理井勘测(GIS)自动搜索储层区间的问题。本文提出了一种利用深度学习神经网络技术自动分配集油区的算法。因此,根据从位于克拉斯诺亚尔斯克边疆区的一个油田的一组油井中获得的数据,创建了一个油藏类型识别系统,该系统在测试样本上的平均准确率达到 92.2%。
APPLICATION OF DEEP LEARNING METHODS FOR AUTOMATIC RECOVERY OF RESERVOIRS IN THE SECTION OF OIL AND GAS WELLS
Статья посвящена решению задачи автоматического поиска интервалов коллекторов по данным геофизических исследований скважин (ГИС) нефтяных и газовых месторождений. Cоздана система распознавания типа коллектора, позволяющая достичь средней точности на тестовой выборке 92,2%.
The article is devoted to solving the problem of automatic search of reservoir intervals according to geophysical well surveys (GIS) of oil and gas fields. This article proposes an algorithm that allows to automate the allocation of collector zones using deep-learning neural network technologies. As a result, based on the data obtained from a group of wells of an oil field located in the Krasnoyarsk Territory, a reservoir type recognition system was created that allows achieving an average accuracy of 92.2% on a test sample.