一个快速和节能的并行图像滤波实现在树莓派的gpu

A. Polat, S. Bayar
{"title":"一个快速和节能的并行图像滤波实现在树莓派的gpu","authors":"A. Polat, S. Bayar","doi":"10.36222/ejt.708805","DOIUrl":null,"url":null,"abstract":"This paper presents a powerful processing technique for fast and energy-efficient image filtering algorithm focusing energy and time-sensitive embedded and robotic platforms. Digital video processing is getting more and more popular in battery-powered devices like mobile robots and smartphones whereas in most cases, it leads overhead on the main central processing unit (CPU) and it consumes a significant amount of energy from the battery. It is suitable for parallelism since there is no data dependency between the steps of the two-dimensional convolution algorithm. We propose a vector version of the two-dimensional convolution algorithm, which can run parallel on embedded processors that has general purpose graphic processing unit (GPGPU), to reduce computation time and energy consumption. Our in-depth experiments shows that using GPGPU could reduce the execution time while guaranteeing lower power consumption and offloading the system CPU. Experimental results showed that we achieved up to 105 times faster operation and 100 times less energy consumption compared to the CPU implementation. Besides, we reduced the CPU overhead up to 10 times.","PeriodicalId":413929,"journal":{"name":"European Journal of Technic","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A FAST AND ENERGY EFFICIENT PARALLEL IMAGE FILTERING IMPLEMENTATION ON RASPBERRY PI'S GPU\",\"authors\":\"A. Polat, S. Bayar\",\"doi\":\"10.36222/ejt.708805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a powerful processing technique for fast and energy-efficient image filtering algorithm focusing energy and time-sensitive embedded and robotic platforms. Digital video processing is getting more and more popular in battery-powered devices like mobile robots and smartphones whereas in most cases, it leads overhead on the main central processing unit (CPU) and it consumes a significant amount of energy from the battery. It is suitable for parallelism since there is no data dependency between the steps of the two-dimensional convolution algorithm. We propose a vector version of the two-dimensional convolution algorithm, which can run parallel on embedded processors that has general purpose graphic processing unit (GPGPU), to reduce computation time and energy consumption. Our in-depth experiments shows that using GPGPU could reduce the execution time while guaranteeing lower power consumption and offloading the system CPU. Experimental results showed that we achieved up to 105 times faster operation and 100 times less energy consumption compared to the CPU implementation. Besides, we reduced the CPU overhead up to 10 times.\",\"PeriodicalId\":413929,\"journal\":{\"name\":\"European Journal of Technic\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Technic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36222/ejt.708805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Technic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36222/ejt.708805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对能量和时间敏感的嵌入式平台和机器人平台,提出了一种高效、快速的图像滤波算法。数字视频处理在移动机器人和智能手机等电池供电的设备中越来越受欢迎,然而在大多数情况下,它会增加主中央处理器(CPU)的开销,并消耗大量电池的能量。由于二维卷积算法的步骤之间不存在数据依赖性,因此适合于并行性。我们提出了一种二维卷积算法的矢量版本,该算法可以在具有通用图形处理单元(GPGPU)的嵌入式处理器上并行运行,以减少计算时间和能耗。我们的深入实验表明,使用GPGPU可以减少执行时间,同时保证较低的功耗和卸载系统CPU。实验结果表明,与CPU实现相比,我们实现了高达105倍的运行速度和100倍的能耗。此外,我们将CPU开销降低了10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A FAST AND ENERGY EFFICIENT PARALLEL IMAGE FILTERING IMPLEMENTATION ON RASPBERRY PI'S GPU
This paper presents a powerful processing technique for fast and energy-efficient image filtering algorithm focusing energy and time-sensitive embedded and robotic platforms. Digital video processing is getting more and more popular in battery-powered devices like mobile robots and smartphones whereas in most cases, it leads overhead on the main central processing unit (CPU) and it consumes a significant amount of energy from the battery. It is suitable for parallelism since there is no data dependency between the steps of the two-dimensional convolution algorithm. We propose a vector version of the two-dimensional convolution algorithm, which can run parallel on embedded processors that has general purpose graphic processing unit (GPGPU), to reduce computation time and energy consumption. Our in-depth experiments shows that using GPGPU could reduce the execution time while guaranteeing lower power consumption and offloading the system CPU. Experimental results showed that we achieved up to 105 times faster operation and 100 times less energy consumption compared to the CPU implementation. Besides, we reduced the CPU overhead up to 10 times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信