Yudong Zhang, C. Esling, M. Calcagnotto, M. Gong, H. Klein, X. Zhao, L. Zuo
{"title":"强磁场对0.81C-Fe钢共析点移及织构演化的影响","authors":"Yudong Zhang, C. Esling, M. Calcagnotto, M. Gong, H. Klein, X. Zhao, L. Zuo","doi":"10.1155/2008/349854","DOIUrl":null,"url":null,"abstract":"A 12 T magnetic field has been applied to the annealing process of a 0.81%C-Fe (wt.%). It is found that the magnetic field shifts the eutectoid carbon content from 0.77 wt.% to 0.83 wt.%. The statistical thermodynamic calculations were performed to calculate the eutectoid temperature change by the magnetic field. Calculation shows that the increase of the eutectoid temperature by a 12 T field is 29∘C. Synchrotron radiation measurements were performed to measure the pole figures of the samples and were analyzed by MAUD to determine the bulk texture of the ferrite phase In the field-treated and non field-treated samples. Results show that although there is no specific preferred orientation appearing by applying the magnetic field, slight enhancement of (001) fiber component occurs in both the sample normal direction (ND) and the transverse direction (TD). This effect might be related to the magnetic dipolar interaction between Fe atoms in the transverse field direction.","PeriodicalId":413822,"journal":{"name":"Texture, Stress, and Microstructure","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Effect of a High Magnetic Field on Eutectoid Point Shift and Texture Evolution in 0.81C-Fe Steel\",\"authors\":\"Yudong Zhang, C. Esling, M. Calcagnotto, M. Gong, H. Klein, X. Zhao, L. Zuo\",\"doi\":\"10.1155/2008/349854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A 12 T magnetic field has been applied to the annealing process of a 0.81%C-Fe (wt.%). It is found that the magnetic field shifts the eutectoid carbon content from 0.77 wt.% to 0.83 wt.%. The statistical thermodynamic calculations were performed to calculate the eutectoid temperature change by the magnetic field. Calculation shows that the increase of the eutectoid temperature by a 12 T field is 29∘C. Synchrotron radiation measurements were performed to measure the pole figures of the samples and were analyzed by MAUD to determine the bulk texture of the ferrite phase In the field-treated and non field-treated samples. Results show that although there is no specific preferred orientation appearing by applying the magnetic field, slight enhancement of (001) fiber component occurs in both the sample normal direction (ND) and the transverse direction (TD). This effect might be related to the magnetic dipolar interaction between Fe atoms in the transverse field direction.\",\"PeriodicalId\":413822,\"journal\":{\"name\":\"Texture, Stress, and Microstructure\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Texture, Stress, and Microstructure\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2008/349854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Texture, Stress, and Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2008/349854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of a High Magnetic Field on Eutectoid Point Shift and Texture Evolution in 0.81C-Fe Steel
A 12 T magnetic field has been applied to the annealing process of a 0.81%C-Fe (wt.%). It is found that the magnetic field shifts the eutectoid carbon content from 0.77 wt.% to 0.83 wt.%. The statistical thermodynamic calculations were performed to calculate the eutectoid temperature change by the magnetic field. Calculation shows that the increase of the eutectoid temperature by a 12 T field is 29∘C. Synchrotron radiation measurements were performed to measure the pole figures of the samples and were analyzed by MAUD to determine the bulk texture of the ferrite phase In the field-treated and non field-treated samples. Results show that although there is no specific preferred orientation appearing by applying the magnetic field, slight enhancement of (001) fiber component occurs in both the sample normal direction (ND) and the transverse direction (TD). This effect might be related to the magnetic dipolar interaction between Fe atoms in the transverse field direction.