预算最大覆盖问题和广义最大覆盖问题的约束近似

Q3 Computer Science
Breno Piva
{"title":"预算最大覆盖问题和广义最大覆盖问题的约束近似","authors":"Breno Piva","doi":"10.1016/j.entcs.2019.08.058","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper we present approximation preserving reductions from the Budgeted and Generalized Maximum Coverage Problems to the Knapsack Problem with Conflict Graphs. The reductions are used to yield Polynomial Time Approximation Schemes for special classes of instances of these problems. Using these approximation schemes, the existence of pseudo-polynomial algorithms are proven and, in more particular cases, these algorithms are shown to have polynomial time complexity. Moreover, the characteristics of the instances that admit these algorithms are analyzed.</p></div>","PeriodicalId":38770,"journal":{"name":"Electronic Notes in Theoretical Computer Science","volume":"346 ","pages":"Pages 667-676"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.058","citationCount":"3","resultStr":"{\"title\":\"Approximations for Restrictions of The Budgeted and Generalized Maximum Coverage Problems\",\"authors\":\"Breno Piva\",\"doi\":\"10.1016/j.entcs.2019.08.058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper we present approximation preserving reductions from the Budgeted and Generalized Maximum Coverage Problems to the Knapsack Problem with Conflict Graphs. The reductions are used to yield Polynomial Time Approximation Schemes for special classes of instances of these problems. Using these approximation schemes, the existence of pseudo-polynomial algorithms are proven and, in more particular cases, these algorithms are shown to have polynomial time complexity. Moreover, the characteristics of the instances that admit these algorithms are analyzed.</p></div>\",\"PeriodicalId\":38770,\"journal\":{\"name\":\"Electronic Notes in Theoretical Computer Science\",\"volume\":\"346 \",\"pages\":\"Pages 667-676\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.entcs.2019.08.058\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Notes in Theoretical Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1571066119301094\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Notes in Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571066119301094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3

摘要

本文给出了预算最大覆盖问题和广义最大覆盖问题对带冲突图的背包问题的近似保留缩减。这些约简用于这些问题的特殊类别实例的多项式时间近似格式。使用这些近似格式,证明了伪多项式算法的存在性,并且在更特殊的情况下,这些算法被证明具有多项式时间复杂度。此外,还分析了采用这些算法的实例的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximations for Restrictions of The Budgeted and Generalized Maximum Coverage Problems

In this paper we present approximation preserving reductions from the Budgeted and Generalized Maximum Coverage Problems to the Knapsack Problem with Conflict Graphs. The reductions are used to yield Polynomial Time Approximation Schemes for special classes of instances of these problems. Using these approximation schemes, the existence of pseudo-polynomial algorithms are proven and, in more particular cases, these algorithms are shown to have polynomial time complexity. Moreover, the characteristics of the instances that admit these algorithms are analyzed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Notes in Theoretical Computer Science
Electronic Notes in Theoretical Computer Science Computer Science-Computer Science (all)
自引率
0.00%
发文量
0
期刊介绍: ENTCS is a venue for the rapid electronic publication of the proceedings of conferences, of lecture notes, monographs and other similar material for which quick publication and the availability on the electronic media is appropriate. Organizers of conferences whose proceedings appear in ENTCS, and authors of other material appearing as a volume in the series are allowed to make hard copies of the relevant volume for limited distribution. For example, conference proceedings may be distributed to participants at the meeting, and lecture notes can be distributed to those taking a course based on the material in the volume.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信