{"title":"双目立体图像深度估计的CNN解决方案","authors":"A. Radványi, T. Kozek, L. Chua","doi":"10.1109/CNNA.1998.685368","DOIUrl":null,"url":null,"abstract":"Novel results and experiments are presented on the application of cellular neural networks to binocular stereo vision. A cellular neural network (CNN) universal machine (UM) algorithm is described for depth estimation as part of a stereo-vision-based guidance system for autonomous vehicles. Being most amenable to revealing stereo correspondence, extraction of vertical edges is performed first. Then their distance from the observer in 3D space is established through a stereo matching scheme. The performance of the algorithm is demonstrated on real-life highway imagery and it is shown that very low latency real-time operation is attainable via the CNN-UM.","PeriodicalId":171485,"journal":{"name":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CNN solution for depth estimation from binocular stereo imagery\",\"authors\":\"A. Radványi, T. Kozek, L. Chua\",\"doi\":\"10.1109/CNNA.1998.685368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel results and experiments are presented on the application of cellular neural networks to binocular stereo vision. A cellular neural network (CNN) universal machine (UM) algorithm is described for depth estimation as part of a stereo-vision-based guidance system for autonomous vehicles. Being most amenable to revealing stereo correspondence, extraction of vertical edges is performed first. Then their distance from the observer in 3D space is established through a stereo matching scheme. The performance of the algorithm is demonstrated on real-life highway imagery and it is shown that very low latency real-time operation is attainable via the CNN-UM.\",\"PeriodicalId\":171485,\"journal\":{\"name\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1998.685368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Fifth IEEE International Workshop on Cellular Neural Networks and their Applications. Proceedings (Cat. No.98TH8359)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1998.685368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CNN solution for depth estimation from binocular stereo imagery
Novel results and experiments are presented on the application of cellular neural networks to binocular stereo vision. A cellular neural network (CNN) universal machine (UM) algorithm is described for depth estimation as part of a stereo-vision-based guidance system for autonomous vehicles. Being most amenable to revealing stereo correspondence, extraction of vertical edges is performed first. Then their distance from the observer in 3D space is established through a stereo matching scheme. The performance of the algorithm is demonstrated on real-life highway imagery and it is shown that very low latency real-time operation is attainable via the CNN-UM.