基于标记图像的对象区域自动标记

Shi-Chao Kan, Yigang Cen, Yanhong Wang, Y. Cen, Shaohai Hu
{"title":"基于标记图像的对象区域自动标记","authors":"Shi-Chao Kan, Yigang Cen, Yanhong Wang, Y. Cen, Shaohai Hu","doi":"10.1109/ISPACS.2017.8266532","DOIUrl":null,"url":null,"abstract":"The performance of image classification can be greatly improved by suitable object proposals. The mainstream framework of object proposals (e.g. Faster R-CNN) needs to manually label every bounding box of each object on an image in the training or fine-tuning stage, which is a time consuming task. Thus, we propose an idea that object regions in each image can be generated firstly by a pre-trained Faster R-CNN based on other complete tagging data set (e.g. PASCAL VOC 2007). Then a fine-tuned convolutional neural network (CNN) on the current data set can be used to mark the object region automatically. Finally, these labeled object regions can be used to fine-tune the Faster R-CNN and CNN. In the animal classification data set of BOT 2016, experimental results show that our proposed method can greatly boost the average accuracy of image classification.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatically marking object regions based on tagged images\",\"authors\":\"Shi-Chao Kan, Yigang Cen, Yanhong Wang, Y. Cen, Shaohai Hu\",\"doi\":\"10.1109/ISPACS.2017.8266532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of image classification can be greatly improved by suitable object proposals. The mainstream framework of object proposals (e.g. Faster R-CNN) needs to manually label every bounding box of each object on an image in the training or fine-tuning stage, which is a time consuming task. Thus, we propose an idea that object regions in each image can be generated firstly by a pre-trained Faster R-CNN based on other complete tagging data set (e.g. PASCAL VOC 2007). Then a fine-tuned convolutional neural network (CNN) on the current data set can be used to mark the object region automatically. Finally, these labeled object regions can be used to fine-tune the Faster R-CNN and CNN. In the animal classification data set of BOT 2016, experimental results show that our proposed method can greatly boost the average accuracy of image classification.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过适当的目标建议,可以大大提高图像分类的性能。对象建议的主流框架(例如Faster R-CNN)需要在训练或微调阶段手动标记图像上每个对象的每个边界框,这是一项耗时的任务。因此,我们提出了一个想法,即每个图像中的目标区域可以首先由基于其他完整标记数据集(例如PASCAL VOC 2007)的预训练的Faster R-CNN生成。然后在当前数据集上使用微调卷积神经网络(CNN)自动标记目标区域。最后,这些标记的对象区域可以用来微调Faster R-CNN和CNN。在BOT 2016的动物分类数据集中,实验结果表明,我们提出的方法可以大大提高图像分类的平均准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatically marking object regions based on tagged images
The performance of image classification can be greatly improved by suitable object proposals. The mainstream framework of object proposals (e.g. Faster R-CNN) needs to manually label every bounding box of each object on an image in the training or fine-tuning stage, which is a time consuming task. Thus, we propose an idea that object regions in each image can be generated firstly by a pre-trained Faster R-CNN based on other complete tagging data set (e.g. PASCAL VOC 2007). Then a fine-tuned convolutional neural network (CNN) on the current data set can be used to mark the object region automatically. Finally, these labeled object regions can be used to fine-tune the Faster R-CNN and CNN. In the animal classification data set of BOT 2016, experimental results show that our proposed method can greatly boost the average accuracy of image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信