Petri网模型与非线性遗传疾病

P. Glory, N. David, J. D. Emerald
{"title":"Petri网模型与非线性遗传疾病","authors":"P. Glory, N. David, J. D. Emerald","doi":"10.1109/BICTA.2010.5645278","DOIUrl":null,"url":null,"abstract":"Understanding how an individual genetic make-up influences their risk of diseases, is a problem of paramount importance. Although machine-learning techniques are unable to uncover the relationships between genotype and disease, we can still build the best biochemical model automatically with the help of methods that identify the DNA sequence variations in human populations that cause genetic diseases. In this paper, we study Petri net model that is bio chemically plausible to a certain degree, that it may reveal characteristics of the actual biochemical pathways in humans that can aid understanding of the disease.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Petri net models and non linear genetic diseases\",\"authors\":\"P. Glory, N. David, J. D. Emerald\",\"doi\":\"10.1109/BICTA.2010.5645278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding how an individual genetic make-up influences their risk of diseases, is a problem of paramount importance. Although machine-learning techniques are unable to uncover the relationships between genotype and disease, we can still build the best biochemical model automatically with the help of methods that identify the DNA sequence variations in human populations that cause genetic diseases. In this paper, we study Petri net model that is bio chemically plausible to a certain degree, that it may reveal characteristics of the actual biochemical pathways in humans that can aid understanding of the disease.\",\"PeriodicalId\":302619,\"journal\":{\"name\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BICTA.2010.5645278\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645278","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

了解个体基因构成如何影响其患病风险,是一个至关重要的问题。虽然机器学习技术无法揭示基因型和疾病之间的关系,但我们仍然可以在识别导致遗传疾病的人群中DNA序列变异的方法的帮助下自动构建最佳的生化模型。在本文中,我们研究的Petri网模型在一定程度上是生化合理的,它可能揭示人类实际生化途径的特征,有助于了解疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Petri net models and non linear genetic diseases
Understanding how an individual genetic make-up influences their risk of diseases, is a problem of paramount importance. Although machine-learning techniques are unable to uncover the relationships between genotype and disease, we can still build the best biochemical model automatically with the help of methods that identify the DNA sequence variations in human populations that cause genetic diseases. In this paper, we study Petri net model that is bio chemically plausible to a certain degree, that it may reveal characteristics of the actual biochemical pathways in humans that can aid understanding of the disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信