图像目标识别中深度网络特征的随机降维

H. Bui, M. Lech, E. Cheng, K. Neville, Richardt H. Wilkinson, I. Burnett
{"title":"图像目标识别中深度网络特征的随机降维","authors":"H. Bui, M. Lech, E. Cheng, K. Neville, Richardt H. Wilkinson, I. Burnett","doi":"10.1109/SIGTELCOM.2018.8325778","DOIUrl":null,"url":null,"abstract":"This study investigates data dimensionality reduction for image object recognition. The dimensionality reduction was applied to features extracted from an existing pre-trained Deep Neural Network (DNN) structure, the AlexNet. An analysis of the neurons in different layers of the AlexNet revealed an incremental increase in the pair-wise orthogonality between weight vectors of neurons in each layer, towards higher-level layers. This observation motivated the current study to evaluate the possibility of performing randomized dimensionality reduction by mimicking the observed orthogonality property of the high-level layers on activations of low-level layers of the AlexNet. Image object classification experiments have shown that the proposed random orthogonal projection method performed well in multiple tests, consistently outperforming the well-known statistics-based sparse random projection. Apart from being data independent, the proposed approach achieved performances comparable with the state-of-the-art techniques, but with lower computational requirements.","PeriodicalId":236488,"journal":{"name":"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Randomized dimensionality reduction of deep network features for image object recognition\",\"authors\":\"H. Bui, M. Lech, E. Cheng, K. Neville, Richardt H. Wilkinson, I. Burnett\",\"doi\":\"10.1109/SIGTELCOM.2018.8325778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates data dimensionality reduction for image object recognition. The dimensionality reduction was applied to features extracted from an existing pre-trained Deep Neural Network (DNN) structure, the AlexNet. An analysis of the neurons in different layers of the AlexNet revealed an incremental increase in the pair-wise orthogonality between weight vectors of neurons in each layer, towards higher-level layers. This observation motivated the current study to evaluate the possibility of performing randomized dimensionality reduction by mimicking the observed orthogonality property of the high-level layers on activations of low-level layers of the AlexNet. Image object classification experiments have shown that the proposed random orthogonal projection method performed well in multiple tests, consistently outperforming the well-known statistics-based sparse random projection. Apart from being data independent, the proposed approach achieved performances comparable with the state-of-the-art techniques, but with lower computational requirements.\",\"PeriodicalId\":236488,\"journal\":{\"name\":\"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIGTELCOM.2018.8325778\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIGTELCOM.2018.8325778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了图像目标识别中的数据降维方法。降维应用于从现有的预训练深度神经网络(DNN)结构AlexNet中提取的特征。对AlexNet不同层的神经元的分析显示,每层神经元的权重向量之间的成对正交性逐渐增加,向更高的层增加。这一观察结果激发了当前的研究,通过模拟观察到的AlexNet低层激活的高层正交性,来评估执行随机降维的可能性。图像目标分类实验表明,本文提出的随机正交投影方法在多个测试中表现良好,始终优于众所周知的基于统计的稀疏随机投影方法。除了与数据无关之外,所提出的方法实现了与最先进技术相当的性能,但计算需求较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Randomized dimensionality reduction of deep network features for image object recognition
This study investigates data dimensionality reduction for image object recognition. The dimensionality reduction was applied to features extracted from an existing pre-trained Deep Neural Network (DNN) structure, the AlexNet. An analysis of the neurons in different layers of the AlexNet revealed an incremental increase in the pair-wise orthogonality between weight vectors of neurons in each layer, towards higher-level layers. This observation motivated the current study to evaluate the possibility of performing randomized dimensionality reduction by mimicking the observed orthogonality property of the high-level layers on activations of low-level layers of the AlexNet. Image object classification experiments have shown that the proposed random orthogonal projection method performed well in multiple tests, consistently outperforming the well-known statistics-based sparse random projection. Apart from being data independent, the proposed approach achieved performances comparable with the state-of-the-art techniques, but with lower computational requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信