基于改进人脸模型的人脸识别算法

Chengyun Liu, Zhenxue Chen, F. Chang, Kaifang Wang
{"title":"基于改进人脸模型的人脸识别算法","authors":"Chengyun Liu, Zhenxue Chen, F. Chang, Kaifang Wang","doi":"10.1109/ICNC.2014.6975963","DOIUrl":null,"url":null,"abstract":"Face recognition is one of typical biometric identification method, which has a great prospect in secure authentication system, file management, human-computer interaction and social security. This paper proposes gray-scale characteristics and creates facial templates to recognize faces method based on a given number of samples. Firstly, it selects the method of building template according to the number of samples to create the facial template image; then, it will compare the difference of first-order edge entropy between recognition image and the template image and find the best match result; finally, the recognition result is output. Experimental results show that the proposed algorithm has good recognition effect on face recognition under non-constraint conditions.","PeriodicalId":208779,"journal":{"name":"2014 10th International Conference on Natural Computation (ICNC)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Face recognition algorithm based on improved facial model\",\"authors\":\"Chengyun Liu, Zhenxue Chen, F. Chang, Kaifang Wang\",\"doi\":\"10.1109/ICNC.2014.6975963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Face recognition is one of typical biometric identification method, which has a great prospect in secure authentication system, file management, human-computer interaction and social security. This paper proposes gray-scale characteristics and creates facial templates to recognize faces method based on a given number of samples. Firstly, it selects the method of building template according to the number of samples to create the facial template image; then, it will compare the difference of first-order edge entropy between recognition image and the template image and find the best match result; finally, the recognition result is output. Experimental results show that the proposed algorithm has good recognition effect on face recognition under non-constraint conditions.\",\"PeriodicalId\":208779,\"journal\":{\"name\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 10th International Conference on Natural Computation (ICNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2014.6975963\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 10th International Conference on Natural Computation (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2014.6975963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人脸识别是一种典型的生物特征识别方法,在安全认证系统、文件管理、人机交互和社会安全等方面具有广阔的应用前景。本文提出了灰度特征,并根据给定的样本数量创建人脸模板进行人脸识别。首先,根据样本数量选择构建模板的方法创建人脸模板图像;然后,比较识别图像与模板图像的一阶边缘熵差,寻找最佳匹配结果;最后输出识别结果。实验结果表明,该算法在无约束条件下具有良好的人脸识别效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Face recognition algorithm based on improved facial model
Face recognition is one of typical biometric identification method, which has a great prospect in secure authentication system, file management, human-computer interaction and social security. This paper proposes gray-scale characteristics and creates facial templates to recognize faces method based on a given number of samples. Firstly, it selects the method of building template according to the number of samples to create the facial template image; then, it will compare the difference of first-order edge entropy between recognition image and the template image and find the best match result; finally, the recognition result is output. Experimental results show that the proposed algorithm has good recognition effect on face recognition under non-constraint conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信