QMine:一个从系统轨迹中挖掘定量正则表达式的框架

P. Mahato, Apurva Narayan
{"title":"QMine:一个从系统轨迹中挖掘定量正则表达式的框架","authors":"P. Mahato, Apurva Narayan","doi":"10.1109/QRS-C51114.2020.00070","DOIUrl":null,"url":null,"abstract":"Dynamic behavior of real-time systems and the ability to distinguish between normal and abnormal behavior is critical in safety-critical systems. Temporal patterns define the order of occurrence of events. Temporal properties help draw insights over system specifications. However, given the complexity of modern-day software in cyber-physical systems, the specifications are either not specified or loosely specified. We propose a framework for automating the task of mining temporal specifications from system traces with both events and quantitative values. Our framework, QMine, is an online property mining framework that extracts properties specified in the form of Quantitative Regular Expression (QRE) templates. QMine is shown to be sound and complete. Moreover, we evaluate our framework using real-world industry-standard traces such as Arrhythmia dataset.","PeriodicalId":358174,"journal":{"name":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"QMine: A Framework for Mining Quantitative Regular Expressions from System Traces\",\"authors\":\"P. Mahato, Apurva Narayan\",\"doi\":\"10.1109/QRS-C51114.2020.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamic behavior of real-time systems and the ability to distinguish between normal and abnormal behavior is critical in safety-critical systems. Temporal patterns define the order of occurrence of events. Temporal properties help draw insights over system specifications. However, given the complexity of modern-day software in cyber-physical systems, the specifications are either not specified or loosely specified. We propose a framework for automating the task of mining temporal specifications from system traces with both events and quantitative values. Our framework, QMine, is an online property mining framework that extracts properties specified in the form of Quantitative Regular Expression (QRE) templates. QMine is shown to be sound and complete. Moreover, we evaluate our framework using real-world industry-standard traces such as Arrhythmia dataset.\",\"PeriodicalId\":358174,\"journal\":{\"name\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/QRS-C51114.2020.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 20th International Conference on Software Quality, Reliability and Security Companion (QRS-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/QRS-C51114.2020.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

实时系统的动态行为和区分正常和异常行为的能力在安全关键系统中至关重要。时间模式定义事件发生的顺序。时间属性有助于绘制对系统规范的见解。然而,考虑到网络物理系统中现代软件的复杂性,这些规范要么没有指定,要么没有严格指定。我们提出了一个框架,用于自动化从具有事件和定量值的系统跟踪中挖掘时间规范的任务。我们的框架QMine是一个在线属性挖掘框架,它提取以定量正则表达式(Quantitative Regular Expression, QRE)模板形式指定的属性。我的显示是健全和完整的。此外,我们使用现实世界的行业标准轨迹(如心律失常数据集)评估我们的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
QMine: A Framework for Mining Quantitative Regular Expressions from System Traces
Dynamic behavior of real-time systems and the ability to distinguish between normal and abnormal behavior is critical in safety-critical systems. Temporal patterns define the order of occurrence of events. Temporal properties help draw insights over system specifications. However, given the complexity of modern-day software in cyber-physical systems, the specifications are either not specified or loosely specified. We propose a framework for automating the task of mining temporal specifications from system traces with both events and quantitative values. Our framework, QMine, is an online property mining framework that extracts properties specified in the form of Quantitative Regular Expression (QRE) templates. QMine is shown to be sound and complete. Moreover, we evaluate our framework using real-world industry-standard traces such as Arrhythmia dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信