行连续马尔可夫链迭代算法的负载平衡与并行实现

M. Colajanni, M. Angelaccio
{"title":"行连续马尔可夫链迭代算法的负载平衡与并行实现","authors":"M. Colajanni, M. Angelaccio","doi":"10.1109/SHPCC.1992.232656","DOIUrl":null,"url":null,"abstract":"Presents the first parallel algorithms for solving row-continuous or generalized birth-death (GBD) Markov chains on distributed memory MIMD multiprocessors. These systems are characterized by very large transition probability matrices, decomposable in heterogeneous tridiagonal blocks. The parallelization of three aggregation/disaggregation iterative methods is carried out by a unique framework that keeps into account the special matrix structure. Great effort has been also devoted to define a general algorithm for approximating the optimum workload. Various computational experiments show that Vantilborgh's (1985) method is the fastest of the three algorithms on any data set dimension.<<ETX>>","PeriodicalId":254515,"journal":{"name":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load balancing and parallel implementation of iterative algorithms for row-continuous Markov chains\",\"authors\":\"M. Colajanni, M. Angelaccio\",\"doi\":\"10.1109/SHPCC.1992.232656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents the first parallel algorithms for solving row-continuous or generalized birth-death (GBD) Markov chains on distributed memory MIMD multiprocessors. These systems are characterized by very large transition probability matrices, decomposable in heterogeneous tridiagonal blocks. The parallelization of three aggregation/disaggregation iterative methods is carried out by a unique framework that keeps into account the special matrix structure. Great effort has been also devoted to define a general algorithm for approximating the optimum workload. Various computational experiments show that Vantilborgh's (1985) method is the fastest of the three algorithms on any data set dimension.<<ETX>>\",\"PeriodicalId\":254515,\"journal\":{\"name\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Scalable High Performance Computing Conference SHPCC-92.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SHPCC.1992.232656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Scalable High Performance Computing Conference SHPCC-92.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SHPCC.1992.232656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了在分布式存储器MIMD多处理机上求解行连续或广义生-死(GBD)马尔可夫链的第一个并行算法。这些系统的特点是具有非常大的转移概率矩阵,可在异质三对角块中分解。考虑到特殊的矩阵结构,采用独特的框架实现了三种聚合/分解迭代方法的并行化。在定义近似最优工作负荷的一般算法方面也付出了很大的努力。各种计算实验表明,vantilborg(1985)的方法在任何数据集维度上都是三种算法中最快的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load balancing and parallel implementation of iterative algorithms for row-continuous Markov chains
Presents the first parallel algorithms for solving row-continuous or generalized birth-death (GBD) Markov chains on distributed memory MIMD multiprocessors. These systems are characterized by very large transition probability matrices, decomposable in heterogeneous tridiagonal blocks. The parallelization of three aggregation/disaggregation iterative methods is carried out by a unique framework that keeps into account the special matrix structure. Great effort has been also devoted to define a general algorithm for approximating the optimum workload. Various computational experiments show that Vantilborgh's (1985) method is the fastest of the three algorithms on any data set dimension.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信