可穿戴医疗传感器可采集动能的统计建模

N. Yarkony, K. Sayrafian-Pour, A. Possolo
{"title":"可穿戴医疗传感器可采集动能的统计建模","authors":"N. Yarkony, K. Sayrafian-Pour, A. Possolo","doi":"10.1109/WOWMOM.2010.5534988","DOIUrl":null,"url":null,"abstract":"Energy Harvesting (EH) refers to the process of capturing and storing energy from external sources or ambient environment. Kinetic energy harvested from the human body motion seems to be one of the most convenient and attractive solution for wearable wireless sensors in healthcare applications. Due to their small size, such sensors have a very limited battery power supply, which necessitates frequent recharge or even sensor replacement. Energy harvesting can prolong the battery lifetime of these sensors. This could directly impact their everyday use and significantly help their commercial applications such as remote monitoring. In this paper, our aim is to estimate the amount of harvestable energy from typical human motion. To simplify the measurement process, we focus on the amount of kinetic energy harvested from the human forearm motion. We provide statistical analysis of measurements taken from 40 test subjects over a period of 8 hours during the day. Using this information and knowing the operational architecture of the harvesting device, the distribution of harvestable energy can also be determined. Our objective is to study whether kinetic energy generated by typical human forearm motion could be a promising supplemental energy resource that prolongs the operational lifetime of wearable medical sensors.","PeriodicalId":384628,"journal":{"name":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Statistical modeling of harvestable kinetic energy for wearable medical sensors\",\"authors\":\"N. Yarkony, K. Sayrafian-Pour, A. Possolo\",\"doi\":\"10.1109/WOWMOM.2010.5534988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Energy Harvesting (EH) refers to the process of capturing and storing energy from external sources or ambient environment. Kinetic energy harvested from the human body motion seems to be one of the most convenient and attractive solution for wearable wireless sensors in healthcare applications. Due to their small size, such sensors have a very limited battery power supply, which necessitates frequent recharge or even sensor replacement. Energy harvesting can prolong the battery lifetime of these sensors. This could directly impact their everyday use and significantly help their commercial applications such as remote monitoring. In this paper, our aim is to estimate the amount of harvestable energy from typical human motion. To simplify the measurement process, we focus on the amount of kinetic energy harvested from the human forearm motion. We provide statistical analysis of measurements taken from 40 test subjects over a period of 8 hours during the day. Using this information and knowing the operational architecture of the harvesting device, the distribution of harvestable energy can also be determined. Our objective is to study whether kinetic energy generated by typical human forearm motion could be a promising supplemental energy resource that prolongs the operational lifetime of wearable medical sensors.\",\"PeriodicalId\":384628,\"journal\":{\"name\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Symposium on \\\"A World of Wireless, Mobile and Multimedia Networks\\\" (WoWMoM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WOWMOM.2010.5534988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on \"A World of Wireless, Mobile and Multimedia Networks\" (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOWMOM.2010.5534988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

能量收集(EH)是指从外部来源或环境中捕获和储存能量的过程。从人体运动中获取动能似乎是可穿戴无线传感器在医疗保健应用中最方便和最有吸引力的解决方案之一。由于尺寸小,这种传感器的电池供电非常有限,需要经常充电甚至更换传感器。能量收集可以延长这些传感器的电池寿命。这可能会直接影响它们的日常使用,并极大地帮助它们的商业应用,如远程监控。在本文中,我们的目标是估计从典型的人体运动中可收集的能量的数量。为了简化测量过程,我们将重点放在从人体前臂运动中获取的动能上。我们对40名测试对象在白天8小时内的测量结果进行统计分析。利用这些信息并了解收集装置的操作架构,还可以确定可收集能量的分布。我们的目的是研究由典型的人类前臂运动产生的动能是否可以作为一种有希望的补充能源,延长可穿戴医疗传感器的使用寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical modeling of harvestable kinetic energy for wearable medical sensors
Energy Harvesting (EH) refers to the process of capturing and storing energy from external sources or ambient environment. Kinetic energy harvested from the human body motion seems to be one of the most convenient and attractive solution for wearable wireless sensors in healthcare applications. Due to their small size, such sensors have a very limited battery power supply, which necessitates frequent recharge or even sensor replacement. Energy harvesting can prolong the battery lifetime of these sensors. This could directly impact their everyday use and significantly help their commercial applications such as remote monitoring. In this paper, our aim is to estimate the amount of harvestable energy from typical human motion. To simplify the measurement process, we focus on the amount of kinetic energy harvested from the human forearm motion. We provide statistical analysis of measurements taken from 40 test subjects over a period of 8 hours during the day. Using this information and knowing the operational architecture of the harvesting device, the distribution of harvestable energy can also be determined. Our objective is to study whether kinetic energy generated by typical human forearm motion could be a promising supplemental energy resource that prolongs the operational lifetime of wearable medical sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信