{"title":"一种改进偏置的电容反馈80 dBΩ 1.1 GHz CMOS跨阻放大器","authors":"A. Romanova, V. Barzdenas","doi":"10.23919/MIXDES49814.2020.9155724","DOIUrl":null,"url":null,"abstract":"The work presents the design of an area-efficient low-noise high-performance CMOS transimpedance amplifier for optical time-domain reflectometers. The proposed solution is based on a low-noise capacitive feedback structure and shows a gain of 83/80 dBΩ with the bandwidth reaching 1.1 GHz and average input-referred noise current density below $1.8 \\mathrm{pA}/\\sqrt{\\mathrm{Hz}}$ in the presence of a 0.7 pF total input capacitance. The noise-efficient feedback structure allows addressing noise problem of conventional feed-forward or resistive feedback devices with the total power consumption around 21 mW while running at 1.8 V power supply. A more accurate design methodology is proposed based on explicit modeling of the biasing circuits and decoupling capacitor and modifications to the reference design are suggested including circuits for PMOS-based biasing and DC current elimination.","PeriodicalId":145224,"journal":{"name":"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Capacitive Feedback 80 dBΩ 1.1 GHz CMOS Transimpedance Amplifier with Improved Biasing\",\"authors\":\"A. Romanova, V. Barzdenas\",\"doi\":\"10.23919/MIXDES49814.2020.9155724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The work presents the design of an area-efficient low-noise high-performance CMOS transimpedance amplifier for optical time-domain reflectometers. The proposed solution is based on a low-noise capacitive feedback structure and shows a gain of 83/80 dBΩ with the bandwidth reaching 1.1 GHz and average input-referred noise current density below $1.8 \\\\mathrm{pA}/\\\\sqrt{\\\\mathrm{Hz}}$ in the presence of a 0.7 pF total input capacitance. The noise-efficient feedback structure allows addressing noise problem of conventional feed-forward or resistive feedback devices with the total power consumption around 21 mW while running at 1.8 V power supply. A more accurate design methodology is proposed based on explicit modeling of the biasing circuits and decoupling capacitor and modifications to the reference design are suggested including circuits for PMOS-based biasing and DC current elimination.\",\"PeriodicalId\":145224,\"journal\":{\"name\":\"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/MIXDES49814.2020.9155724\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/MIXDES49814.2020.9155724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Capacitive Feedback 80 dBΩ 1.1 GHz CMOS Transimpedance Amplifier with Improved Biasing
The work presents the design of an area-efficient low-noise high-performance CMOS transimpedance amplifier for optical time-domain reflectometers. The proposed solution is based on a low-noise capacitive feedback structure and shows a gain of 83/80 dBΩ with the bandwidth reaching 1.1 GHz and average input-referred noise current density below $1.8 \mathrm{pA}/\sqrt{\mathrm{Hz}}$ in the presence of a 0.7 pF total input capacitance. The noise-efficient feedback structure allows addressing noise problem of conventional feed-forward or resistive feedback devices with the total power consumption around 21 mW while running at 1.8 V power supply. A more accurate design methodology is proposed based on explicit modeling of the biasing circuits and decoupling capacitor and modifications to the reference design are suggested including circuits for PMOS-based biasing and DC current elimination.