{"title":"基于全轨迹gan模仿学习的机器人对象操纵","authors":"Haoxu Wang, D. Meger","doi":"10.1109/CRV52889.2021.00016","DOIUrl":null,"url":null,"abstract":"This paper develops a novel generative imitation learning system capable of capturing the distribution of expert demonstrations in trajectory space, which allows longer temporal context within complex motion sequences to be captured. While auto-regressive models that model time-steps sequentially can in principle be recursively applied to capture long sequences, there are known issues with learning such models reliably. In contrast, our model represents full trajectories a first-class entities, which has required us to adapt the typical generative adversarial learning architecture. We pair a full-trajectory discriminator with an imitation-inspired generative trajectory model and train these two in adversarial fashion. Our results show that our method matches the performance of existing approaches for simple tasks, in simulation and on real robot deployments. We produce state-of-the-art accuracy in replicating motions that contain long-term dependencies such as pouring.","PeriodicalId":413697,"journal":{"name":"2021 18th Conference on Robots and Vision (CRV)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robotic Object Manipulation with Full-Trajectory GAN-Based Imitation Learning\",\"authors\":\"Haoxu Wang, D. Meger\",\"doi\":\"10.1109/CRV52889.2021.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a novel generative imitation learning system capable of capturing the distribution of expert demonstrations in trajectory space, which allows longer temporal context within complex motion sequences to be captured. While auto-regressive models that model time-steps sequentially can in principle be recursively applied to capture long sequences, there are known issues with learning such models reliably. In contrast, our model represents full trajectories a first-class entities, which has required us to adapt the typical generative adversarial learning architecture. We pair a full-trajectory discriminator with an imitation-inspired generative trajectory model and train these two in adversarial fashion. Our results show that our method matches the performance of existing approaches for simple tasks, in simulation and on real robot deployments. We produce state-of-the-art accuracy in replicating motions that contain long-term dependencies such as pouring.\",\"PeriodicalId\":413697,\"journal\":{\"name\":\"2021 18th Conference on Robots and Vision (CRV)\",\"volume\":\"78 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th Conference on Robots and Vision (CRV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV52889.2021.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th Conference on Robots and Vision (CRV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV52889.2021.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robotic Object Manipulation with Full-Trajectory GAN-Based Imitation Learning
This paper develops a novel generative imitation learning system capable of capturing the distribution of expert demonstrations in trajectory space, which allows longer temporal context within complex motion sequences to be captured. While auto-regressive models that model time-steps sequentially can in principle be recursively applied to capture long sequences, there are known issues with learning such models reliably. In contrast, our model represents full trajectories a first-class entities, which has required us to adapt the typical generative adversarial learning architecture. We pair a full-trajectory discriminator with an imitation-inspired generative trajectory model and train these two in adversarial fashion. Our results show that our method matches the performance of existing approaches for simple tasks, in simulation and on real robot deployments. We produce state-of-the-art accuracy in replicating motions that contain long-term dependencies such as pouring.