基于声道长度归一化因子的说话人簇UBM

A. K. Sarkar, S. Rath, S. Umesh
{"title":"基于声道长度归一化因子的说话人簇UBM","authors":"A. K. Sarkar, S. Rath, S. Umesh","doi":"10.1109/NCC.2010.5430207","DOIUrl":null,"url":null,"abstract":"In speaker verification task requires some sort of background model for the system to make decision. Most of the cases, a speaker independent large Gaussian Universal Background Model (GMM-UBM) is used. In this paper, we propose to use a Speaker Cluster-wise UBM (SC-UBM) for a group of target speakers. In this method, the target speakers are clustered into group based on their similarity in Vocal Tract Length Normalization (VTLN) parameter. The VTLN parameter depends on the physiological structure of human speech production system. Hence, the group of speakers with same VTLN factor represent a speaker with unique characteristic. The SC-UBMs are derived from GMM-UBM with Maximum Likelihood Linear Regression (MLLR) by pooling data from the specific group of target speakers. The speaker dependent models are then adapted from their respective SC-UBM using Maximum a Posteriori (MAP) method. During verification, the log likelihood ratio for the claimant is calculated with respect to the corresponding group specific UBM. The comparative study are performed on NIST 2004 SRE in core condition. The SC-UBM system reduced equal error rate (EER) by 9% over the GMM-UBM system.","PeriodicalId":130953,"journal":{"name":"2010 National Conference On Communications (NCC)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Vocal Tract Length Normalization factor based speaker-cluster UBM for speaker verification\",\"authors\":\"A. K. Sarkar, S. Rath, S. Umesh\",\"doi\":\"10.1109/NCC.2010.5430207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In speaker verification task requires some sort of background model for the system to make decision. Most of the cases, a speaker independent large Gaussian Universal Background Model (GMM-UBM) is used. In this paper, we propose to use a Speaker Cluster-wise UBM (SC-UBM) for a group of target speakers. In this method, the target speakers are clustered into group based on their similarity in Vocal Tract Length Normalization (VTLN) parameter. The VTLN parameter depends on the physiological structure of human speech production system. Hence, the group of speakers with same VTLN factor represent a speaker with unique characteristic. The SC-UBMs are derived from GMM-UBM with Maximum Likelihood Linear Regression (MLLR) by pooling data from the specific group of target speakers. The speaker dependent models are then adapted from their respective SC-UBM using Maximum a Posteriori (MAP) method. During verification, the log likelihood ratio for the claimant is calculated with respect to the corresponding group specific UBM. The comparative study are performed on NIST 2004 SRE in core condition. The SC-UBM system reduced equal error rate (EER) by 9% over the GMM-UBM system.\",\"PeriodicalId\":130953,\"journal\":{\"name\":\"2010 National Conference On Communications (NCC)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 National Conference On Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2010.5430207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 National Conference On Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2010.5430207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在说话人验证任务中,系统需要某种背景模型来进行决策。在大多数情况下,使用与说话人无关的大高斯通用背景模型(GMM-UBM)。在本文中,我们提出了一种针对一组目标说话人的基于说话人集群的UBM (SC-UBM)。该方法根据目标说话人在声道长度归一化(VTLN)参数中的相似度对其进行聚类。VTLN参数取决于人类语音产生系统的生理结构。因此,具有相同VTLN因子的扬声器组代表具有独特特性的扬声器。sc - ubm是利用最大似然线性回归(Maximum Likelihood Linear Regression, MLLR)将特定目标说话者群体的数据汇集在一起,从GMM-UBM中得到的。然后使用最大后验(MAP)方法根据各自的SC-UBM调整说话人相关模型。在验证期间,根据相应的特定于组的UBM计算索赔人的对数似然比。在核心工况下,在NIST 2004 SRE上进行了对比研究。SC-UBM系统比GMM-UBM系统减少了9%的相等错误率(EER)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vocal Tract Length Normalization factor based speaker-cluster UBM for speaker verification
In speaker verification task requires some sort of background model for the system to make decision. Most of the cases, a speaker independent large Gaussian Universal Background Model (GMM-UBM) is used. In this paper, we propose to use a Speaker Cluster-wise UBM (SC-UBM) for a group of target speakers. In this method, the target speakers are clustered into group based on their similarity in Vocal Tract Length Normalization (VTLN) parameter. The VTLN parameter depends on the physiological structure of human speech production system. Hence, the group of speakers with same VTLN factor represent a speaker with unique characteristic. The SC-UBMs are derived from GMM-UBM with Maximum Likelihood Linear Regression (MLLR) by pooling data from the specific group of target speakers. The speaker dependent models are then adapted from their respective SC-UBM using Maximum a Posteriori (MAP) method. During verification, the log likelihood ratio for the claimant is calculated with respect to the corresponding group specific UBM. The comparative study are performed on NIST 2004 SRE in core condition. The SC-UBM system reduced equal error rate (EER) by 9% over the GMM-UBM system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信