{"title":"纳米正弦波阵列的局部表面等离子体共振","authors":"D. Mortazavi, A. Kouzani, L. Matekovits","doi":"10.1109/IWAT.2013.6518311","DOIUrl":null,"url":null,"abstract":"It is demonstrated that the newly proposed nano-sinusoid shape has more resonance wavelength tunability than that other sharp-tip nano-particles such as nano-triangles and nano-diamonds. It is also show that an array of nano-sinusoids provides more enhancement at hot spots in comparison to other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of 2D arrays of NPs, demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.","PeriodicalId":247542,"journal":{"name":"2013 International Workshop on Antenna Technology (iWAT)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Localized surface plasmon resonance in nano-sinusoid arrays\",\"authors\":\"D. Mortazavi, A. Kouzani, L. Matekovits\",\"doi\":\"10.1109/IWAT.2013.6518311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is demonstrated that the newly proposed nano-sinusoid shape has more resonance wavelength tunability than that other sharp-tip nano-particles such as nano-triangles and nano-diamonds. It is also show that an array of nano-sinusoids provides more enhancement at hot spots in comparison to other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of 2D arrays of NPs, demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.\",\"PeriodicalId\":247542,\"journal\":{\"name\":\"2013 International Workshop on Antenna Technology (iWAT)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Workshop on Antenna Technology (iWAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2013.6518311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Workshop on Antenna Technology (iWAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2013.6518311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Localized surface plasmon resonance in nano-sinusoid arrays
It is demonstrated that the newly proposed nano-sinusoid shape has more resonance wavelength tunability than that other sharp-tip nano-particles such as nano-triangles and nano-diamonds. It is also show that an array of nano-sinusoids provides more enhancement at hot spots in comparison to other examined nano-particle shapes. This enhancement is analytically quantified using the coupling constant values used in the electrostatic eigenmode method for analytically solving Maxwell's equations for the nano-plasmonic devices. In addition, investigating LSPR spectrum of 2D arrays of NPs, demonstrates existence of enhanced surface electric fields on hot spots of the outer rows of the array.