任意曲面的解析、交点衍射之间的混沌和椭圆行为共存

P. Berger
{"title":"任意曲面的解析、交点衍射之间的混沌和椭圆行为共存","authors":"P. Berger","doi":"10.5802/jep.224","DOIUrl":null,"url":null,"abstract":"We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors (intregrable KAM island) among analytic, symplectic diffeomorphism of any closed surface. In particilar this solves a problem by F. Przytycki (1982).","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface\",\"authors\":\"P. Berger\",\"doi\":\"10.5802/jep.224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors (intregrable KAM island) among analytic, symplectic diffeomorphism of any closed surface. In particilar this solves a problem by F. Przytycki (1982).\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们证明了在任何封闭曲面的解析交映衍射中,混沌行为(正度量熵)和椭圆行为(可内卷的 KAM 岛)是共存的。特别是,这解决了 F. Przytycki(1982 年)提出的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coexistence of chaotic and elliptic behaviors among analytic, symplectic diffeomorphisms of any surface
We show the coexistence of chaotic behaviors (positive metric entropy) and elliptic behaviors (intregrable KAM island) among analytic, symplectic diffeomorphism of any closed surface. In particilar this solves a problem by F. Przytycki (1982).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信