Pareto前解集成的多目标遗传聚类在MRI脑图像分割中的应用

A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay
{"title":"Pareto前解集成的多目标遗传聚类在MRI脑图像分割中的应用","authors":"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay","doi":"10.1109/ICAPR.2009.51","DOIUrl":null,"url":null,"abstract":"This article describes a multiobjective genetic fuzzy clustering scheme that utilizes the search capabilities of NSGA-II, a popular multiobjective genetic algorithm and optimizes a number of fuzzy cluster validity measures. Real-coded encoding of the cluster centers is used for this purpose. The multiobjective clustering scheme produces a number of non-dominated solutions, each of which contains some information about the clustering structure. Hence it is required to obtain the final optimal clustering by combining those information. For this, clustering ensemble is used to combine the non-dominated solutions of the final Pareto front produced. The proposed method is applied on several simulated T1-weighted, T2-weighted and proton density-weighted normal MRI brain images. Superiority of the proposed method over K-means, Fuzzy C-means, Expectation Maximization and Single Objective Genetic clustering have been demonstrated.","PeriodicalId":443926,"journal":{"name":"2009 Seventh International Conference on Advances in Pattern Recognition","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Multiobjective Genetic Clustering with Ensemble Among Pareto Front Solutions: Application to MRI Brain Image Segmentation\",\"authors\":\"A. Mukhopadhyay, U. Maulik, S. Bandyopadhyay\",\"doi\":\"10.1109/ICAPR.2009.51\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article describes a multiobjective genetic fuzzy clustering scheme that utilizes the search capabilities of NSGA-II, a popular multiobjective genetic algorithm and optimizes a number of fuzzy cluster validity measures. Real-coded encoding of the cluster centers is used for this purpose. The multiobjective clustering scheme produces a number of non-dominated solutions, each of which contains some information about the clustering structure. Hence it is required to obtain the final optimal clustering by combining those information. For this, clustering ensemble is used to combine the non-dominated solutions of the final Pareto front produced. The proposed method is applied on several simulated T1-weighted, T2-weighted and proton density-weighted normal MRI brain images. Superiority of the proposed method over K-means, Fuzzy C-means, Expectation Maximization and Single Objective Genetic clustering have been demonstrated.\",\"PeriodicalId\":443926,\"journal\":{\"name\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Seventh International Conference on Advances in Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAPR.2009.51\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Seventh International Conference on Advances in Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPR.2009.51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

本文描述了一种多目标遗传模糊聚类方案,该方案利用了流行的多目标遗传算法NSGA-II的搜索能力,并优化了一些模糊聚类有效性度量。簇中心的实编码编码用于此目的。多目标聚类方案产生许多非支配解,每个解都包含有关聚类结构的一些信息。因此,需要将这些信息组合在一起,得到最终的最优聚类。为此,使用聚类集成将最终产生的Pareto前沿的非支配解组合起来。将该方法应用于多个模拟的t1加权、t2加权和质子密度加权的正常MRI脑图像。该方法优于K-means、模糊C-means、期望最大化和单目标遗传聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multiobjective Genetic Clustering with Ensemble Among Pareto Front Solutions: Application to MRI Brain Image Segmentation
This article describes a multiobjective genetic fuzzy clustering scheme that utilizes the search capabilities of NSGA-II, a popular multiobjective genetic algorithm and optimizes a number of fuzzy cluster validity measures. Real-coded encoding of the cluster centers is used for this purpose. The multiobjective clustering scheme produces a number of non-dominated solutions, each of which contains some information about the clustering structure. Hence it is required to obtain the final optimal clustering by combining those information. For this, clustering ensemble is used to combine the non-dominated solutions of the final Pareto front produced. The proposed method is applied on several simulated T1-weighted, T2-weighted and proton density-weighted normal MRI brain images. Superiority of the proposed method over K-means, Fuzzy C-means, Expectation Maximization and Single Objective Genetic clustering have been demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信