基于Kozachenko-Leonenko熵估计的区域图像相似准则

Juan D. García-Arteaga, J. Kybic
{"title":"基于Kozachenko-Leonenko熵估计的区域图像相似准则","authors":"Juan D. García-Arteaga, J. Kybic","doi":"10.1109/CVPRW.2008.4563022","DOIUrl":null,"url":null,"abstract":"Mutual information is one of the most widespread similarity criteria for multi-modal image registration but is limited to low dimensional feature spaces when calculated using histogram and kernel based entropy estimators. In the present article we propose the use of the Kozachenko-Leonenko entropy estimator (KLE) to calculate higher order regional mutual information using local features. The use of local information overcomes the two most prominent problems of nearest neighbor based entropy estimation in image registration: the presence of strong interpolation artifacts and noise. The performance of the proposed criterion is compared to standard MI on data with a known ground truth using a protocol for the evaluation of image registration similarity measures. Finally, we show how the use of the KLE with local features improves the robustness and accuracy of the registration of color colposcopy images.","PeriodicalId":102206,"journal":{"name":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Regional image similarity criteria based on the Kozachenko-Leonenko entropy estimator\",\"authors\":\"Juan D. García-Arteaga, J. Kybic\",\"doi\":\"10.1109/CVPRW.2008.4563022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mutual information is one of the most widespread similarity criteria for multi-modal image registration but is limited to low dimensional feature spaces when calculated using histogram and kernel based entropy estimators. In the present article we propose the use of the Kozachenko-Leonenko entropy estimator (KLE) to calculate higher order regional mutual information using local features. The use of local information overcomes the two most prominent problems of nearest neighbor based entropy estimation in image registration: the presence of strong interpolation artifacts and noise. The performance of the proposed criterion is compared to standard MI on data with a known ground truth using a protocol for the evaluation of image registration similarity measures. Finally, we show how the use of the KLE with local features improves the robustness and accuracy of the registration of color colposcopy images.\",\"PeriodicalId\":102206,\"journal\":{\"name\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2008.4563022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2008.4563022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

互信息是多模态图像配准中最广泛使用的相似性标准之一,但在使用直方图和基于核的熵估计器计算时,它仅限于低维特征空间。在本文中,我们提出使用Kozachenko-Leonenko熵估计器(KLE)来计算利用局部特征的高阶区域互信息。局部信息的使用克服了基于最近邻的熵估计在图像配准中存在的两个最突出的问题:强插值伪影和噪声。使用评估图像配准相似度量的协议,将所提出标准的性能与具有已知基础真值的数据上的标准MI进行比较。最后,我们展示了如何使用局部特征的KLE提高了彩色阴道镜图像配准的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regional image similarity criteria based on the Kozachenko-Leonenko entropy estimator
Mutual information is one of the most widespread similarity criteria for multi-modal image registration but is limited to low dimensional feature spaces when calculated using histogram and kernel based entropy estimators. In the present article we propose the use of the Kozachenko-Leonenko entropy estimator (KLE) to calculate higher order regional mutual information using local features. The use of local information overcomes the two most prominent problems of nearest neighbor based entropy estimation in image registration: the presence of strong interpolation artifacts and noise. The performance of the proposed criterion is compared to standard MI on data with a known ground truth using a protocol for the evaluation of image registration similarity measures. Finally, we show how the use of the KLE with local features improves the robustness and accuracy of the registration of color colposcopy images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信