Rijul Saini, G. Mussbacher, Jin L. C. Guo, J. Kienzle
{"title":"DoMoBOT:一个用于自动化和可追溯领域建模的建模机器人","authors":"Rijul Saini, G. Mussbacher, Jin L. C. Guo, J. Kienzle","doi":"10.1109/RE51729.2021.00054","DOIUrl":null,"url":null,"abstract":"In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.","PeriodicalId":440285,"journal":{"name":"2021 IEEE 29th International Requirements Engineering Conference (RE)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"DoMoBOT: A Modelling Bot for Automated and Traceable Domain Modelling\",\"authors\":\"Rijul Saini, G. Mussbacher, Jin L. C. Guo, J. Kienzle\",\"doi\":\"10.1109/RE51729.2021.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.\",\"PeriodicalId\":440285,\"journal\":{\"name\":\"2021 IEEE 29th International Requirements Engineering Conference (RE)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 29th International Requirements Engineering Conference (RE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RE51729.2021.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 29th International Requirements Engineering Conference (RE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RE51729.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DoMoBOT: A Modelling Bot for Automated and Traceable Domain Modelling
In the initial phases of the software development cycle, domain modelling is typically performed to transform informal requirements expressed in natural language into concise and analyzable domain models. These models capture the key concepts of an application domain and their relationships in the form of class diagrams. Building domain models manually is often a time-consuming and labor-intensive task. The current approaches which aim to extract domain models automatically, are inadequate in providing insights into the modelling decisions taken by extractor systems. This inhibits modellers to quickly confirm the completeness and conciseness of extracted domain models. To address these challenges, we present DoMoBOT, a domain modelling bot that uses a traceability knowledge graph to enable traceability of modelling decisions from extracted domain model elements to requirements and vice-versa. In this tool demo paper, we showcase how the implementation and architecture of DoMoBOT facilitate modellers to extract domain models and gain insights into the modelling decisions taken by our bot.