{"title":"用计算机围棋评估棋手实力指标的检验","authors":"Yuuto Kosaka, Takeshi Ito","doi":"10.1109/TAAI.2018.00030","DOIUrl":null,"url":null,"abstract":"This study proposes a method to estimate players' skill using Computer Go. Computer Go has been considered one of the biggest challenges of artificial intelligence (AI) research. The AI of Go is based on the Monte Carlo tree search (MCTS) algorithm unlike the games of chess and shogi which are based on the game tree search using the evaluation function. Further, we apply the evaluation index used in the strength estimation method for shogi to the game of Go. We analyze the game records of KGS and YUUGEN-NO-MA with the evaluation index using the MCTS winning rate. It is concluded that stronger AI is necessary for identifying strength-estimating indicators.","PeriodicalId":211734,"journal":{"name":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Examination of Indicators for Estimating Players' Strength by Using Computer Go\",\"authors\":\"Yuuto Kosaka, Takeshi Ito\",\"doi\":\"10.1109/TAAI.2018.00030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes a method to estimate players' skill using Computer Go. Computer Go has been considered one of the biggest challenges of artificial intelligence (AI) research. The AI of Go is based on the Monte Carlo tree search (MCTS) algorithm unlike the games of chess and shogi which are based on the game tree search using the evaluation function. Further, we apply the evaluation index used in the strength estimation method for shogi to the game of Go. We analyze the game records of KGS and YUUGEN-NO-MA with the evaluation index using the MCTS winning rate. It is concluded that stronger AI is necessary for identifying strength-estimating indicators.\",\"PeriodicalId\":211734,\"journal\":{\"name\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2018.00030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2018.00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
本研究提出一种评估棋手围棋水平的方法。计算机围棋被认为是人工智能(AI)研究的最大挑战之一。围棋的人工智能是基于蒙特卡洛树搜索(Monte Carlo tree search, MCTS)算法,而国际象棋和将军棋则是基于使用评价函数的游戏树搜索。在此基础上,将将棋强度估计方法中的评价指标应用到围棋中。采用MCTS胜率评价指标对KGS和YUUGEN-NO-MA的比赛记录进行了分析。结论是需要更强的人工智能来识别强度估计指标。
Examination of Indicators for Estimating Players' Strength by Using Computer Go
This study proposes a method to estimate players' skill using Computer Go. Computer Go has been considered one of the biggest challenges of artificial intelligence (AI) research. The AI of Go is based on the Monte Carlo tree search (MCTS) algorithm unlike the games of chess and shogi which are based on the game tree search using the evaluation function. Further, we apply the evaluation index used in the strength estimation method for shogi to the game of Go. We analyze the game records of KGS and YUUGEN-NO-MA with the evaluation index using the MCTS winning rate. It is concluded that stronger AI is necessary for identifying strength-estimating indicators.