脉冲波在小金属球上散射的时域建模

A. Butrym, Hao Yu
{"title":"脉冲波在小金属球上散射的时域建模","authors":"A. Butrym, Hao Yu","doi":"10.1109/UWBUSIS.2018.8519976","DOIUrl":null,"url":null,"abstract":"We consider a short pulse plane wave incident on a small metal sphere. The scattered field from the sphere can be presented as a multipole expansion over spherical harmonics. For small spheres (compared to the signal duration) the scattered field will be mainly presented by the dipole component. So we find in a closed form and analyze the convolution operator that relates the induced dipole moment (both electric and magnetic dipoles are considered) to the incident electric field waveform. The numerical approach to calculate scattering from several such spheres is described.","PeriodicalId":167305,"journal":{"name":"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time Domain Modelling of Pulse Wave Scattering on Small Metal Spheres\",\"authors\":\"A. Butrym, Hao Yu\",\"doi\":\"10.1109/UWBUSIS.2018.8519976\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a short pulse plane wave incident on a small metal sphere. The scattered field from the sphere can be presented as a multipole expansion over spherical harmonics. For small spheres (compared to the signal duration) the scattered field will be mainly presented by the dipole component. So we find in a closed form and analyze the convolution operator that relates the induced dipole moment (both electric and magnetic dipoles are considered) to the incident electric field waveform. The numerical approach to calculate scattering from several such spheres is described.\",\"PeriodicalId\":167305,\"journal\":{\"name\":\"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UWBUSIS.2018.8519976\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UWBUSIS.2018.8519976","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑入射在小金属球上的短脉冲平面波。来自球体的散射场可以表示为球面谐波上的多极展开。对于较小的球体(与信号持续时间相比),散射场主要表现为偶极子分量。因此,我们找到并分析了感应偶极矩(考虑电偶极和磁偶极)与入射电场波形的卷积算子的封闭形式。本文描述了几种此类球体散射的数值计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time Domain Modelling of Pulse Wave Scattering on Small Metal Spheres
We consider a short pulse plane wave incident on a small metal sphere. The scattered field from the sphere can be presented as a multipole expansion over spherical harmonics. For small spheres (compared to the signal duration) the scattered field will be mainly presented by the dipole component. So we find in a closed form and analyze the convolution operator that relates the induced dipole moment (both electric and magnetic dipoles are considered) to the incident electric field waveform. The numerical approach to calculate scattering from several such spheres is described.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信