基于辅助损失的神经网络行程时间估计

Yunchong Gan, Haoyu Zhang, Mingjie Wang
{"title":"基于辅助损失的神经网络行程时间估计","authors":"Yunchong Gan, Haoyu Zhang, Mingjie Wang","doi":"10.1145/3474717.3488238","DOIUrl":null,"url":null,"abstract":"Estimated Time of Arrival (ETA) plays an important role in various applications, for instance, scene of order dispatch, estimate price, travel time prediction, route decision, etc. In this project, we propose a new systematical Wide-Deep-Double-Recurrent model with Auxiliary loss (WDDRA), which involves Auxiliary Loss for Link Current Status prediction task. Our extensive evaluations show that WDDRA significantly outperforms the state-of-the-art learning algorithms. And our final ensemble model wins second place on the SIGSPATIAL 2021 GISCUP leaderboard without data augmentation. Our source code is available at:https://github.com/Phimos/SIGSPATIAL-2021-GISCUP-2nd-Place-Solution","PeriodicalId":340759,"journal":{"name":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Travel Time Estimation Based on Neural Network with Auxiliary Loss\",\"authors\":\"Yunchong Gan, Haoyu Zhang, Mingjie Wang\",\"doi\":\"10.1145/3474717.3488238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimated Time of Arrival (ETA) plays an important role in various applications, for instance, scene of order dispatch, estimate price, travel time prediction, route decision, etc. In this project, we propose a new systematical Wide-Deep-Double-Recurrent model with Auxiliary loss (WDDRA), which involves Auxiliary Loss for Link Current Status prediction task. Our extensive evaluations show that WDDRA significantly outperforms the state-of-the-art learning algorithms. And our final ensemble model wins second place on the SIGSPATIAL 2021 GISCUP leaderboard without data augmentation. Our source code is available at:https://github.com/Phimos/SIGSPATIAL-2021-GISCUP-2nd-Place-Solution\",\"PeriodicalId\":340759,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3474717.3488238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3474717.3488238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

预计到达时间(ETA)在订单调度场景、预估价格、行程时间预测、路线决策等应用中发挥着重要作用。在这个项目中,我们提出了一个新的系统的带辅助损耗的宽深双循环模型(WDDRA),该模型涉及链路电流状态预测任务的辅助损耗。我们的广泛评估表明,WDDRA显著优于最先进的学习算法。在没有数据增强的情况下,我们最终的集成模型在SIGSPATIAL 2021 GISCUP排行榜上获得了第二名。我们的源代码可从https://github.com/Phimos/SIGSPATIAL-2021-GISCUP-2nd-Place-Solution获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Travel Time Estimation Based on Neural Network with Auxiliary Loss
Estimated Time of Arrival (ETA) plays an important role in various applications, for instance, scene of order dispatch, estimate price, travel time prediction, route decision, etc. In this project, we propose a new systematical Wide-Deep-Double-Recurrent model with Auxiliary loss (WDDRA), which involves Auxiliary Loss for Link Current Status prediction task. Our extensive evaluations show that WDDRA significantly outperforms the state-of-the-art learning algorithms. And our final ensemble model wins second place on the SIGSPATIAL 2021 GISCUP leaderboard without data augmentation. Our source code is available at:https://github.com/Phimos/SIGSPATIAL-2021-GISCUP-2nd-Place-Solution
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信