{"title":"基于编码小波分解特征的跨数据集工作负载分类","authors":"W. L. Lim, O. Sourina, Lipo Wang","doi":"10.1109/CW.2018.00062","DOIUrl":null,"url":null,"abstract":"For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.","PeriodicalId":388539,"journal":{"name":"2018 International Conference on Cyberworlds (CW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross Dataset Workload Classification Using Encoded Wavelet Decomposition Features\",\"authors\":\"W. L. Lim, O. Sourina, Lipo Wang\",\"doi\":\"10.1109/CW.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.\",\"PeriodicalId\":388539,\"journal\":{\"name\":\"2018 International Conference on Cyberworlds (CW)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cross Dataset Workload Classification Using Encoded Wavelet Decomposition Features
For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.