基于编码小波分解特征的跨数据集工作负载分类

W. L. Lim, O. Sourina, Lipo Wang
{"title":"基于编码小波分解特征的跨数据集工作负载分类","authors":"W. L. Lim, O. Sourina, Lipo Wang","doi":"10.1109/CW.2018.00062","DOIUrl":null,"url":null,"abstract":"For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.","PeriodicalId":388539,"journal":{"name":"2018 International Conference on Cyberworlds (CW)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Cross Dataset Workload Classification Using Encoded Wavelet Decomposition Features\",\"authors\":\"W. L. Lim, O. Sourina, Lipo Wang\",\"doi\":\"10.1109/CW.2018.00062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.\",\"PeriodicalId\":388539,\"journal\":{\"name\":\"2018 International Conference on Cyberworlds (CW)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Cyberworlds (CW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CW.2018.00062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Cyberworlds (CW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CW.2018.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在实际应用中,训练有素的分类系统独立于任务和/或主题是理想的。在这项研究中,我们展示了两个独立EEG工作负载数据集之间的单向传输:从一个有48个受试者的大型多任务数据集到第二个有18个受试者的Stroop测试数据集。这是通过使用alpha, beta和theta功率波段分解小波的稀疏编码表示训练的分类系统实现的,该分类系统学习的特征表示比基准功率谱密度特征高出3.5%。我们还探索了利用转移成分分析(TCA)的领域自适应技术提高性能的可能性,对4类交叉数据集问题获得了30.0%的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cross Dataset Workload Classification Using Encoded Wavelet Decomposition Features
For practical applications, it is desirable for a trained classification system to be independent of task and/or subject. In this study, we show one-way transfer between two independent EEG workload datasets: from a large multitasking dataset with 48 subjects to a second Stroop test dataset with 18 subjects. This was achieved with a classification system trained using sparse encoded representations of the decomposed wavelets in the alpha, beta and theta power bands, which learnt a feature representation that outperformed benchmark power spectral density features by 3.5%. We also explore the possibility of enhancing performance with the utilization of domain adaptation techniques using transfer component analysis (TCA), obtaining 30.0% classification accuracy for a 4-class cross dataset problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信