预赛

Andreas Bolfing
{"title":"预赛","authors":"Andreas Bolfing","doi":"10.1093/oso/9780198862840.003.0002","DOIUrl":null,"url":null,"abstract":"Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.","PeriodicalId":202275,"journal":{"name":"Cryptographic Primitives in Blockchain Technology","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preliminaries\",\"authors\":\"Andreas Bolfing\",\"doi\":\"10.1093/oso/9780198862840.003.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.\",\"PeriodicalId\":202275,\"journal\":{\"name\":\"Cryptographic Primitives in Blockchain Technology\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryptographic Primitives in Blockchain Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/oso/9780198862840.003.0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptographic Primitives in Blockchain Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780198862840.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

区块链在很大程度上基于数学概念,特别是代数结构。本章首先介绍数论的主要方面,如整数的可整除性、素数和欧拉的全局性函数。基于这些基础知识,它将非常详细地介绍现代代数,包括群论、环理论和场论。然后将代数主要结果应用于描述构造密码原语所需的循环群和有限域的结构。本章以复杂性理论的介绍结束,检查算法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preliminaries
Blockchains are heavily based on mathematical concepts, in particular on algebraic structures. This chapter starts with an introduction to the main aspects in number theory, such as the divisibility of integers, prime numbers and Euler’s totient function. Based on these basics, it follows a very detailed introduction to modern algebra, including group theory, ring theory and field theory. The algebraic main results are then applied to describe the structure of cyclic groups and finite fields, which are needed to construct cryptographic primitives. The chapter closes with an introduction to complexity theory, examining the efficiency of algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信