用于数字身份管理的基于生物特征的标识符

Abhilasha Bhargav-Spantzel, A. Squicciarini, E. Bertino, Xiangwei Kong, Weike Zhang
{"title":"用于数字身份管理的基于生物特征的标识符","authors":"Abhilasha Bhargav-Spantzel, A. Squicciarini, E. Bertino, Xiangwei Kong, Weike Zhang","doi":"10.1145/1750389.1750401","DOIUrl":null,"url":null,"abstract":"We present algorithms to reliably generate biometric identifiers from a user's biometric image which in turn is used for identity verification possibly in conjunction with cryptographic keys. The biometric identifier generation algorithms employ image hashing functions using singular value decomposition and support vector classification techniques. Our algorithms capture generic biometric features that ensure unique and repeatable biometric identifiers. We provide an empirical evaluation of our techniques using 2569 images of 488 different individuals for three types of biometric images; namely fingerprint, iris and face. Based on the biometric type and the classification models, as a result of the empirical evaluation we can generate biometric identifiers ranging from 64 bits up to 214 bits. We provide an example use of the biometric identifiers in privacy preserving multi-factor identity verification based on zero knowledge proofs. Therefore several identity verification factors, including various traditional identity attributes, can be used in conjunction with one or more biometrics of the individual to provide strong identity verification. We also ensure security and privacy of the biometric data. More specifically, we analyze several attack scenarios. We assure privacy of the biometric using the one-way hashing property, in that no information about the original biometric image is revealed from the biometric identifier.","PeriodicalId":269454,"journal":{"name":"Symposium on Identity and Trust on the Internet","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Biometrics-based identifiers for digital identity management\",\"authors\":\"Abhilasha Bhargav-Spantzel, A. Squicciarini, E. Bertino, Xiangwei Kong, Weike Zhang\",\"doi\":\"10.1145/1750389.1750401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present algorithms to reliably generate biometric identifiers from a user's biometric image which in turn is used for identity verification possibly in conjunction with cryptographic keys. The biometric identifier generation algorithms employ image hashing functions using singular value decomposition and support vector classification techniques. Our algorithms capture generic biometric features that ensure unique and repeatable biometric identifiers. We provide an empirical evaluation of our techniques using 2569 images of 488 different individuals for three types of biometric images; namely fingerprint, iris and face. Based on the biometric type and the classification models, as a result of the empirical evaluation we can generate biometric identifiers ranging from 64 bits up to 214 bits. We provide an example use of the biometric identifiers in privacy preserving multi-factor identity verification based on zero knowledge proofs. Therefore several identity verification factors, including various traditional identity attributes, can be used in conjunction with one or more biometrics of the individual to provide strong identity verification. We also ensure security and privacy of the biometric data. More specifically, we analyze several attack scenarios. We assure privacy of the biometric using the one-way hashing property, in that no information about the original biometric image is revealed from the biometric identifier.\",\"PeriodicalId\":269454,\"journal\":{\"name\":\"Symposium on Identity and Trust on the Internet\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symposium on Identity and Trust on the Internet\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1750389.1750401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Identity and Trust on the Internet","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1750389.1750401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

我们提出了从用户的生物特征图像中可靠地生成生物特征标识符的算法,这些标识符反过来可能与加密密钥一起用于身份验证。生物识别标识符生成算法采用图像哈希函数、奇异值分解和支持向量分类技术。我们的算法捕获通用的生物特征,确保唯一和可重复的生物特征标识符。我们使用488个不同个体的2569张图像对三种类型的生物识别图像提供了我们的技术的经验评估;即指纹、虹膜和面部。基于生物特征类型和分类模型,通过实证评估,我们可以生成64 ~ 214位的生物特征标识符。给出了生物特征标识符在基于零知识证明的隐私保护多因素身份验证中的应用实例。因此,几种身份验证因素,包括各种传统身份属性,可以与个人的一种或多种生物识别技术结合使用,以提供强大的身份验证。我们还确保生物识别数据的安全性和隐私性。更具体地说,我们分析了几种攻击场景。我们使用单向哈希特性来保证生物识别的隐私性,因为生物识别标识符不会泄露原始生物识别图像的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biometrics-based identifiers for digital identity management
We present algorithms to reliably generate biometric identifiers from a user's biometric image which in turn is used for identity verification possibly in conjunction with cryptographic keys. The biometric identifier generation algorithms employ image hashing functions using singular value decomposition and support vector classification techniques. Our algorithms capture generic biometric features that ensure unique and repeatable biometric identifiers. We provide an empirical evaluation of our techniques using 2569 images of 488 different individuals for three types of biometric images; namely fingerprint, iris and face. Based on the biometric type and the classification models, as a result of the empirical evaluation we can generate biometric identifiers ranging from 64 bits up to 214 bits. We provide an example use of the biometric identifiers in privacy preserving multi-factor identity verification based on zero knowledge proofs. Therefore several identity verification factors, including various traditional identity attributes, can be used in conjunction with one or more biometrics of the individual to provide strong identity verification. We also ensure security and privacy of the biometric data. More specifically, we analyze several attack scenarios. We assure privacy of the biometric using the one-way hashing property, in that no information about the original biometric image is revealed from the biometric identifier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信