{"title":"基于局部外观的人脸识别中不同降维归一化方法的研究","authors":"Berkay Topp, Hakan Erdogan","doi":"10.1109/SIU.2009.5136425","DOIUrl":null,"url":null,"abstract":"Local appearance-based methods have been proposed recently for face recognition. We analyze the effects of different dimension reduction and normalization methods on local appearance-based face recognition in this paper. Each image is divided into equal sized blocks and six different dimension reduction methods are implemented for each block separately to create local visual feature vectors. On these local features, several normalization methods are applied in an attempt to eliminate the changes in lighting conditions and contrast differences among blocks of different face images. The experimental results show the improvements in recognition rates due to the effects of dimension reduction and normalization for three different classifiers. Usage of trainable dimension reduction methods instead of DCT and a new normalization method in our work (within-block normalization as referred in this paper) are two factors that makes difference from previous works in literature. The best performance is achieved using a block size of 16×16, performing dimension reduction using approximate pairwise accuracy criterion (aPAC) and applying within-block mean and variance normalization.","PeriodicalId":219938,"journal":{"name":"2009 IEEE 17th Signal Processing and Communications Applications Conference","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of different dimension reduction and normalization methods for local appearance-based face recognition\",\"authors\":\"Berkay Topp, Hakan Erdogan\",\"doi\":\"10.1109/SIU.2009.5136425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local appearance-based methods have been proposed recently for face recognition. We analyze the effects of different dimension reduction and normalization methods on local appearance-based face recognition in this paper. Each image is divided into equal sized blocks and six different dimension reduction methods are implemented for each block separately to create local visual feature vectors. On these local features, several normalization methods are applied in an attempt to eliminate the changes in lighting conditions and contrast differences among blocks of different face images. The experimental results show the improvements in recognition rates due to the effects of dimension reduction and normalization for three different classifiers. Usage of trainable dimension reduction methods instead of DCT and a new normalization method in our work (within-block normalization as referred in this paper) are two factors that makes difference from previous works in literature. The best performance is achieved using a block size of 16×16, performing dimension reduction using approximate pairwise accuracy criterion (aPAC) and applying within-block mean and variance normalization.\",\"PeriodicalId\":219938,\"journal\":{\"name\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE 17th Signal Processing and Communications Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU.2009.5136425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE 17th Signal Processing and Communications Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2009.5136425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of different dimension reduction and normalization methods for local appearance-based face recognition
Local appearance-based methods have been proposed recently for face recognition. We analyze the effects of different dimension reduction and normalization methods on local appearance-based face recognition in this paper. Each image is divided into equal sized blocks and six different dimension reduction methods are implemented for each block separately to create local visual feature vectors. On these local features, several normalization methods are applied in an attempt to eliminate the changes in lighting conditions and contrast differences among blocks of different face images. The experimental results show the improvements in recognition rates due to the effects of dimension reduction and normalization for three different classifiers. Usage of trainable dimension reduction methods instead of DCT and a new normalization method in our work (within-block normalization as referred in this paper) are two factors that makes difference from previous works in literature. The best performance is achieved using a block size of 16×16, performing dimension reduction using approximate pairwise accuracy criterion (aPAC) and applying within-block mean and variance normalization.