基于价格预测的增长RBF神经网络拥塞管理

S. Pandey, S. Tapaswi, L. Srivastava
{"title":"基于价格预测的增长RBF神经网络拥塞管理","authors":"S. Pandey, S. Tapaswi, L. Srivastava","doi":"10.1109/INDCON.2008.4768771","DOIUrl":null,"url":null,"abstract":"This paper proposes a growing radial basis function (GRBF) neural network based methodology for nodal congestion price (NCP) prediction for congestion management in emerging restructured power system. An unsupervised learning vector quantization (VQ) clustering has been employed as feature selection technique for GRBF neural network as well as for partitioning the power system into different congestion zones. This ensures faster training for proposed neural network and furnishes instant and accurate NCP values, useful for congestion management under real time power market environment. A case study of RTS 24-bus system is presented for demonstrating the computational efficiency and feasibility of this approach.","PeriodicalId":196254,"journal":{"name":"2008 Annual IEEE India Conference","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Price prediction based congestion management using growing RBF neural network\",\"authors\":\"S. Pandey, S. Tapaswi, L. Srivastava\",\"doi\":\"10.1109/INDCON.2008.4768771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a growing radial basis function (GRBF) neural network based methodology for nodal congestion price (NCP) prediction for congestion management in emerging restructured power system. An unsupervised learning vector quantization (VQ) clustering has been employed as feature selection technique for GRBF neural network as well as for partitioning the power system into different congestion zones. This ensures faster training for proposed neural network and furnishes instant and accurate NCP values, useful for congestion management under real time power market environment. A case study of RTS 24-bus system is presented for demonstrating the computational efficiency and feasibility of this approach.\",\"PeriodicalId\":196254,\"journal\":{\"name\":\"2008 Annual IEEE India Conference\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Annual IEEE India Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2008.4768771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Annual IEEE India Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2008.4768771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于增长径向基函数(GRBF)神经网络的节点拥塞价格预测方法,用于新兴重构电力系统的拥塞管理。将无监督学习向量量化(VQ)聚类技术应用于GRBF神经网络的特征选择和电力系统不同拥塞区域的划分。这保证了神经网络的快速训练,并提供即时准确的NCP值,有助于实时电力市场环境下的拥塞管理。以RTS 24总线系统为例,验证了该方法的计算效率和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Price prediction based congestion management using growing RBF neural network
This paper proposes a growing radial basis function (GRBF) neural network based methodology for nodal congestion price (NCP) prediction for congestion management in emerging restructured power system. An unsupervised learning vector quantization (VQ) clustering has been employed as feature selection technique for GRBF neural network as well as for partitioning the power system into different congestion zones. This ensures faster training for proposed neural network and furnishes instant and accurate NCP values, useful for congestion management under real time power market environment. A case study of RTS 24-bus system is presented for demonstrating the computational efficiency and feasibility of this approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信