利用 Neo4j 中的模型驱动分类框架进行基站异常预测

N. Petrovic, Issam Al-Azzoni, D. Krstić, Abdullah Alqahtani
{"title":"利用 Neo4j 中的模型驱动分类框架进行基站异常预测","authors":"N. Petrovic, Issam Al-Azzoni, D. Krstić, Abdullah Alqahtani","doi":"10.1109/CoBCom55489.2022.9880776","DOIUrl":null,"url":null,"abstract":"Machine learning is one of key-enablers in case of novel usage scenarios and adaptive behavior within next generation mobile networks. In this paper, it is examined how model-driven approach can be adopted to automatize machine learning tasks aiming mobile network data analysis. The framework is evaluated on classification task for purpose of base station anomaly detection relying on Neo4j graph database. According to the experiments performed on publicly available dataset, such approach shows promising results when it comes to both classification performance and reducing the time required for operations related to data import and model training.","PeriodicalId":131597,"journal":{"name":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Base Station Anomaly Prediction Leveraging Model-Driven Framework for Classification in Neo4j\",\"authors\":\"N. Petrovic, Issam Al-Azzoni, D. Krstić, Abdullah Alqahtani\",\"doi\":\"10.1109/CoBCom55489.2022.9880776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is one of key-enablers in case of novel usage scenarios and adaptive behavior within next generation mobile networks. In this paper, it is examined how model-driven approach can be adopted to automatize machine learning tasks aiming mobile network data analysis. The framework is evaluated on classification task for purpose of base station anomaly detection relying on Neo4j graph database. According to the experiments performed on publicly available dataset, such approach shows promising results when it comes to both classification performance and reducing the time required for operations related to data import and model training.\",\"PeriodicalId\":131597,\"journal\":{\"name\":\"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoBCom55489.2022.9880776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Broadband Communications for Next Generation Networks and Multimedia Applications (CoBCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoBCom55489.2022.9880776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在下一代移动网络中,机器学习是应对新的使用场景和自适应行为的关键手段之一。本文研究了如何采用模型驱动方法来自动执行针对移动网络数据分析的机器学习任务。该框架依托 Neo4j 图数据库,在基站异常检测的分类任务中进行了评估。根据在公开数据集上进行的实验,这种方法在分类性能以及减少数据导入和模型训练相关操作所需的时间方面都显示出良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Base Station Anomaly Prediction Leveraging Model-Driven Framework for Classification in Neo4j
Machine learning is one of key-enablers in case of novel usage scenarios and adaptive behavior within next generation mobile networks. In this paper, it is examined how model-driven approach can be adopted to automatize machine learning tasks aiming mobile network data analysis. The framework is evaluated on classification task for purpose of base station anomaly detection relying on Neo4j graph database. According to the experiments performed on publicly available dataset, such approach shows promising results when it comes to both classification performance and reducing the time required for operations related to data import and model training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信