基于代数方法的知识库可测量和可度量模型的构建方法

B. Kulik, A. Fridman
{"title":"基于代数方法的知识库可测量和可度量模型的构建方法","authors":"B. Kulik, A. Fridman","doi":"10.1109/ICDSBA48748.2019.00066","DOIUrl":null,"url":null,"abstract":"Conventional methods to provide measurability and metrization of knowledge models cover only a small part of possible models, namely Bayesian networks and probabilistic analysis of models expressed by formulas of propositional calculus. The report proposes a new approach to building a wider class of measurable and metrizable knowledge models based on n-tuple algebra developed by the authors earlier. Besides. the proposed approach makes it possible to use clustering methods in models of knowledge bases.","PeriodicalId":382429,"journal":{"name":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Methods for Constructing Measurable and Metrizable Models of Knowledge Bases within Algebraic Approach\",\"authors\":\"B. Kulik, A. Fridman\",\"doi\":\"10.1109/ICDSBA48748.2019.00066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional methods to provide measurability and metrization of knowledge models cover only a small part of possible models, namely Bayesian networks and probabilistic analysis of models expressed by formulas of propositional calculus. The report proposes a new approach to building a wider class of measurable and metrizable knowledge models based on n-tuple algebra developed by the authors earlier. Besides. the proposed approach makes it possible to use clustering methods in models of knowledge bases.\",\"PeriodicalId\":382429,\"journal\":{\"name\":\"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)\",\"volume\":\"97 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSBA48748.2019.00066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 3rd International Conference on Data Science and Business Analytics (ICDSBA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSBA48748.2019.00066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提供知识模型的可测量性和度量性的传统方法只涵盖了一小部分可能的模型,即贝叶斯网络和由命题微积分公式表示的模型的概率分析。该报告提出了一种基于作者先前开发的n元代数构建更广泛的可测量和可度量知识模型的新方法。除了。提出的方法使得在知识库模型中使用聚类方法成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Methods for Constructing Measurable and Metrizable Models of Knowledge Bases within Algebraic Approach
Conventional methods to provide measurability and metrization of knowledge models cover only a small part of possible models, namely Bayesian networks and probabilistic analysis of models expressed by formulas of propositional calculus. The report proposes a new approach to building a wider class of measurable and metrizable knowledge models based on n-tuple algebra developed by the authors earlier. Besides. the proposed approach makes it possible to use clustering methods in models of knowledge bases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信