基于聚合物的混合膜-柔性纳米机械压阻传感器

G. P. Vamshi, B. S. Tina, V. Seena
{"title":"基于聚合物的混合膜-柔性纳米机械压阻传感器","authors":"G. P. Vamshi, B. S. Tina, V. Seena","doi":"10.1109/ICSENS.2018.8589806","DOIUrl":null,"url":null,"abstract":"In this paper, a novel Hybrid Membrane-Flexure Nanomechanical (HMF-NM) Piezoresistive Sensor with SU-8 as structural material and Indium Tin Oxide (ITO) as piezoresistor is designed and simulated using commercial finite element analysis (FEA) software. SU-8/ITO microcantilever has been fabricated to electromechanically extract the piezoresistive property of ITO which has been considered for simulation. The simulated device consists of a circular membrane coated with receptor layer suspended by inverse trapezoidal flexures with embedded piezoresistors. Surface stress induced on the membrane due to target binding is transduced as a uniaxial stress in the flexures which is then sensed using piezoresistors. A conventional polymer U-shaped piezoresistive cantilever is also designed and simulated for comparison. The surface stress sensitivity of HMF-NM sensor is extracted as 4.01 ppm/[mN/m] which is more than 20 times that of a conventional cantilever.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Polymer Based Hybrid Membrane-Flexure Nanomechanical Piezoresistive Sensor\",\"authors\":\"G. P. Vamshi, B. S. Tina, V. Seena\",\"doi\":\"10.1109/ICSENS.2018.8589806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel Hybrid Membrane-Flexure Nanomechanical (HMF-NM) Piezoresistive Sensor with SU-8 as structural material and Indium Tin Oxide (ITO) as piezoresistor is designed and simulated using commercial finite element analysis (FEA) software. SU-8/ITO microcantilever has been fabricated to electromechanically extract the piezoresistive property of ITO which has been considered for simulation. The simulated device consists of a circular membrane coated with receptor layer suspended by inverse trapezoidal flexures with embedded piezoresistors. Surface stress induced on the membrane due to target binding is transduced as a uniaxial stress in the flexures which is then sensed using piezoresistors. A conventional polymer U-shaped piezoresistive cantilever is also designed and simulated for comparison. The surface stress sensitivity of HMF-NM sensor is extracted as 4.01 ppm/[mN/m] which is more than 20 times that of a conventional cantilever.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589806\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文以SU-8为结构材料,氧化铟锡(ITO)为压阻材料,设计了一种新型混合膜-柔性纳米机械(HMF-NM)压阻传感器,并利用商业有限元分析(FEA)软件进行了仿真。制作SU-8/ITO微悬臂梁,以机电方式提取ITO的压阻特性,并将其用于仿真。该模拟装置由一层圆形膜组成,该膜上涂有由嵌入压敏电阻的反梯形弯曲悬浮的受体层。由于目标结合而引起的膜表面应力被转导为弯曲中的单轴应力,然后使用压敏电阻进行感应。设计并模拟了一种传统的聚合物u型压阻悬臂。HMF-NM传感器的表面应力灵敏度为4.01 ppm/[mN/m],是传统悬臂梁的20倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polymer Based Hybrid Membrane-Flexure Nanomechanical Piezoresistive Sensor
In this paper, a novel Hybrid Membrane-Flexure Nanomechanical (HMF-NM) Piezoresistive Sensor with SU-8 as structural material and Indium Tin Oxide (ITO) as piezoresistor is designed and simulated using commercial finite element analysis (FEA) software. SU-8/ITO microcantilever has been fabricated to electromechanically extract the piezoresistive property of ITO which has been considered for simulation. The simulated device consists of a circular membrane coated with receptor layer suspended by inverse trapezoidal flexures with embedded piezoresistors. Surface stress induced on the membrane due to target binding is transduced as a uniaxial stress in the flexures which is then sensed using piezoresistors. A conventional polymer U-shaped piezoresistive cantilever is also designed and simulated for comparison. The surface stress sensitivity of HMF-NM sensor is extracted as 4.01 ppm/[mN/m] which is more than 20 times that of a conventional cantilever.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信