一种求解约束满足问题的高效启发式进化算法

V. Tam, Peter James Stuckey
{"title":"一种求解约束满足问题的高效启发式进化算法","authors":"V. Tam, Peter James Stuckey","doi":"10.1109/IJSIS.1998.685421","DOIUrl":null,"url":null,"abstract":"GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems\",\"authors\":\"V. Tam, Peter James Stuckey\",\"doi\":\"10.1109/IJSIS.1998.685421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.\",\"PeriodicalId\":289764,\"journal\":{\"name\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1998.685421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

GENET和EGENET是人工神经网络,在解决汽车排序等硬约束满足问题(csp)方面取得了显著的成功。(E)GENET在变量更新中使用最小冲突启发式方法寻找局部最小值,然后应用启发式学习规则来逃避不代表解的局部最小值。本文描述了一种微遗传算法(MGA),它将(E)GENET方法推广到求解csp问题。我们提出的MGA将最小冲突启发式算法集成到突变中,用于将等位基因(值)重新分配给基因(变量)。此外,基于进化算法的一般原理,我们推导了两种逃避局部最小值的方法:基于种群的学习,并展望了未来。我们的初步实验结果表明,这种进化方法在解决某些csp的困难实例时改进了EGENET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems
GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信