{"title":"一种求解约束满足问题的高效启发式进化算法","authors":"V. Tam, Peter James Stuckey","doi":"10.1109/IJSIS.1998.685421","DOIUrl":null,"url":null,"abstract":"GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems\",\"authors\":\"V. Tam, Peter James Stuckey\",\"doi\":\"10.1109/IJSIS.1998.685421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.\",\"PeriodicalId\":289764,\"journal\":{\"name\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJSIS.1998.685421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems
GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.