聚类的自适应距离度量学习

Jieping Ye, Zheng Zhao, Huan Liu
{"title":"聚类的自适应距离度量学习","authors":"Jieping Ye, Zheng Zhao, Huan Liu","doi":"10.1109/CVPR.2007.383103","DOIUrl":null,"url":null,"abstract":"A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metric learning algorithms appeal to projecting observed data onto a low-dimensional manifold, where geometric relationships such as local or global pairwise distances are preserved. However, the projection may not necessarily improve the separability of the data, which is the desirable outcome of clustering. In this paper, we propose a novel unsupervised adaptive metric learning algorithm, called AML, which performs clustering and distance metric learning simultaneously. AML projects the data onto a low-dimensional manifold, where the separability of the data is maximized. We show that the joint clustering and distance metric learning can be formulated as a trace maximization problem, which can be solved via an iterative procedure in the EM framework. Experimental results on a collection of benchmark data sets demonstrated the effectiveness of the proposed algorithm.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":"{\"title\":\"Adaptive Distance Metric Learning for Clustering\",\"authors\":\"Jieping Ye, Zheng Zhao, Huan Liu\",\"doi\":\"10.1109/CVPR.2007.383103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metric learning algorithms appeal to projecting observed data onto a low-dimensional manifold, where geometric relationships such as local or global pairwise distances are preserved. However, the projection may not necessarily improve the separability of the data, which is the desirable outcome of clustering. In this paper, we propose a novel unsupervised adaptive metric learning algorithm, called AML, which performs clustering and distance metric learning simultaneously. AML projects the data onto a low-dimensional manifold, where the separability of the data is maximized. We show that the joint clustering and distance metric learning can be formulated as a trace maximization problem, which can be solved via an iterative procedure in the EM framework. Experimental results on a collection of benchmark data sets demonstrated the effectiveness of the proposed algorithm.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"119\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119

摘要

一个好的距离度量对于从高维数据中进行无监督学习至关重要。为了在没有任何约束或类标签信息的情况下学习度量,大多数无监督度量学习算法呼吁将观察到的数据投影到低维流形上,其中保留了局部或全局成对距离等几何关系。然而,投影不一定能提高数据的可分离性,而这是聚类的理想结果。在本文中,我们提出了一种新的无监督自适应度量学习算法,称为AML,它同时进行聚类和距离度量学习。AML将数据投影到低维流形上,其中数据的可分离性得到最大化。我们证明了联合聚类和距离度量学习可以被表述为轨迹最大化问题,该问题可以通过EM框架中的迭代过程来解决。在一组基准数据集上的实验结果证明了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive Distance Metric Learning for Clustering
A good distance metric is crucial for unsupervised learning from high-dimensional data. To learn a metric without any constraint or class label information, most unsupervised metric learning algorithms appeal to projecting observed data onto a low-dimensional manifold, where geometric relationships such as local or global pairwise distances are preserved. However, the projection may not necessarily improve the separability of the data, which is the desirable outcome of clustering. In this paper, we propose a novel unsupervised adaptive metric learning algorithm, called AML, which performs clustering and distance metric learning simultaneously. AML projects the data onto a low-dimensional manifold, where the separability of the data is maximized. We show that the joint clustering and distance metric learning can be formulated as a trace maximization problem, which can be solved via an iterative procedure in the EM framework. Experimental results on a collection of benchmark data sets demonstrated the effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信