基于遗传强化学习的交通信号协同控制

S. Mikami, Y. Kakazu
{"title":"基于遗传强化学习的交通信号协同控制","authors":"S. Mikami, Y. Kakazu","doi":"10.1109/ICEC.1994.350012","DOIUrl":null,"url":null,"abstract":"Optimization of a group of traffic signals over an area is a large, multi-agent-type real-time planning problem without a precise reference model being given. To do this planning, each signal should learn not only to acquire its control plans individually through reinforcement learning, but also to cooperate with other signals. These two objectives-distributed learning of agents and cooperation among agents-conflict with each other, and a method that blends these two objectives together is required. In the method proposed in this paper, these two objectives correspond to localized reinforcement learning and global combinatorial optimization, respectively, and the method thus achieves cooperation in the long term without bothering with autonomy. The outline of the idea is as follows: each agent performs reinforcement learning and reports its cumulative performance evaluation, and combinatorial optimization is simultaneously carried out to find appropriate parameters for long-term learning that maximize the total profit of the signals (agents).<<ETX>>","PeriodicalId":393865,"journal":{"name":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"96","resultStr":"{\"title\":\"Genetic reinforcement learning for cooperative traffic signal control\",\"authors\":\"S. Mikami, Y. Kakazu\",\"doi\":\"10.1109/ICEC.1994.350012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization of a group of traffic signals over an area is a large, multi-agent-type real-time planning problem without a precise reference model being given. To do this planning, each signal should learn not only to acquire its control plans individually through reinforcement learning, but also to cooperate with other signals. These two objectives-distributed learning of agents and cooperation among agents-conflict with each other, and a method that blends these two objectives together is required. In the method proposed in this paper, these two objectives correspond to localized reinforcement learning and global combinatorial optimization, respectively, and the method thus achieves cooperation in the long term without bothering with autonomy. The outline of the idea is as follows: each agent performs reinforcement learning and reports its cumulative performance evaluation, and combinatorial optimization is simultaneously carried out to find appropriate parameters for long-term learning that maximize the total profit of the signals (agents).<<ETX>>\",\"PeriodicalId\":393865,\"journal\":{\"name\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"96\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEC.1994.350012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEC.1994.350012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 96

摘要

区域内一组交通信号的优化是一个大型的、多智能体类型的实时规划问题,没有给出精确的参考模型。为了进行这种规划,每个信号不仅要学会通过强化学习单独获取自己的控制计划,还要学会与其他信号合作。智能体的分布式学习和智能体之间的合作这两个目标是相互冲突的,需要一种将这两个目标融合在一起的方法。在本文提出的方法中,这两个目标分别对应于局部强化学习和全局组合优化,从而在不影响自主性的情况下实现长期的合作。其思想概要如下:每个智能体进行强化学习并报告其累积性能评价,同时进行组合优化,寻找合适的参数进行长期学习,使信号(智能体)的总收益最大化。b>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic reinforcement learning for cooperative traffic signal control
Optimization of a group of traffic signals over an area is a large, multi-agent-type real-time planning problem without a precise reference model being given. To do this planning, each signal should learn not only to acquire its control plans individually through reinforcement learning, but also to cooperate with other signals. These two objectives-distributed learning of agents and cooperation among agents-conflict with each other, and a method that blends these two objectives together is required. In the method proposed in this paper, these two objectives correspond to localized reinforcement learning and global combinatorial optimization, respectively, and the method thus achieves cooperation in the long term without bothering with autonomy. The outline of the idea is as follows: each agent performs reinforcement learning and reports its cumulative performance evaluation, and combinatorial optimization is simultaneously carried out to find appropriate parameters for long-term learning that maximize the total profit of the signals (agents).<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信