Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, A. Gandhi, M. Upton
{"title":"连续流管道","authors":"Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, A. Gandhi, M. Upton","doi":"10.1145/1024393.1024407","DOIUrl":null,"url":null,"abstract":"Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new non-blocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must be addressed, and we propose a unified solution. The non-blocking property of CFP keeps key processor structures affecting cycle time and power (scheduler, register file), and die size (second level cache) small. The memory latency-tolerant CFP core allows multiple cores on a single die while outperforming current processor cores for single-thread applications.","PeriodicalId":344295,"journal":{"name":"ASPLOS XI","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"197","resultStr":"{\"title\":\"Continual flow pipelines\",\"authors\":\"Srikanth T. Srinivasan, Ravi Rajwar, Haitham Akkary, A. Gandhi, M. Upton\",\"doi\":\"10.1145/1024393.1024407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new non-blocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must be addressed, and we propose a unified solution. The non-blocking property of CFP keeps key processor structures affecting cycle time and power (scheduler, register file), and die size (second level cache) small. The memory latency-tolerant CFP core allows multiple cores on a single die while outperforming current processor cores for single-thread applications.\",\"PeriodicalId\":344295,\"journal\":{\"name\":\"ASPLOS XI\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"197\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASPLOS XI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1024393.1024407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASPLOS XI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1024393.1024407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Increased integration in the form of multiple processor cores on a single die, relatively constant die sizes, shrinking power envelopes, and emerging applications create a new challenge for processor architects. How to build a processor that provides high single-thread performance and enables multiple of these to be placed on the same die for high throughput while dynamically adapting for future applications? Conventional approaches for high single-thread performance rely on large and complex cores to sustain a large instruction window for memory tolerance, making them unsuitable for multi-core chips. We present Continual Flow Pipelines (CFP) as a new non-blocking processor pipeline architecture that achieves the performance of a large instruction window without requiring cycle-critical structures such as the scheduler and register file to be large. We show that to achieve benefits of a large instruction window, inefficiencies in management of both the scheduler and register file must be addressed, and we propose a unified solution. The non-blocking property of CFP keeps key processor structures affecting cycle time and power (scheduler, register file), and die size (second level cache) small. The memory latency-tolerant CFP core allows multiple cores on a single die while outperforming current processor cores for single-thread applications.