K. Ram, J. R. Santos, Yoshio Turner, A. Cox, S. Rixner
{"title":"通过安全透明的网络接口虚拟化实现10gb /s","authors":"K. Ram, J. R. Santos, Yoshio Turner, A. Cox, S. Rixner","doi":"10.1145/1508293.1508303","DOIUrl":null,"url":null,"abstract":"This paper presents mechanisms and optimizations to reduce the overhead of network interface virtualization when using the driver domain I/O virtualization model. The driver domain model provides benefits such as support for legacy device drivers and fault isolation. However, the processing overheads incurred in the driver domain to achieve these benefits limit overall I/O performance. This paper demonstrates the effectiveness of two approaches to reduce driver domain overheads. First, Xen is modified to support multi-queue network interfaces to eliminate the software overheads of packet demultiplexing and copying. Second, a grant reuse mechanism is developed to reduce memory protection overheads. These mechanisms shift the bottleneck from the driver domain to the guest domains, improving scalability and enabling significantly higher data rates. This paper also presents and evaluates a series of optimizations that substantially reduce the I/O virtualization overheads in the guest domain. In combination, these mechanisms and optimizations increase the maximum throughput achieved by guest domains from 2.9Gb/s to full 10 Gigabit Ethernet link rates.","PeriodicalId":202844,"journal":{"name":"International Conference on Virtual Execution Environments","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":"{\"title\":\"Achieving 10 Gb/s using safe and transparent network interface virtualization\",\"authors\":\"K. Ram, J. R. Santos, Yoshio Turner, A. Cox, S. Rixner\",\"doi\":\"10.1145/1508293.1508303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents mechanisms and optimizations to reduce the overhead of network interface virtualization when using the driver domain I/O virtualization model. The driver domain model provides benefits such as support for legacy device drivers and fault isolation. However, the processing overheads incurred in the driver domain to achieve these benefits limit overall I/O performance. This paper demonstrates the effectiveness of two approaches to reduce driver domain overheads. First, Xen is modified to support multi-queue network interfaces to eliminate the software overheads of packet demultiplexing and copying. Second, a grant reuse mechanism is developed to reduce memory protection overheads. These mechanisms shift the bottleneck from the driver domain to the guest domains, improving scalability and enabling significantly higher data rates. This paper also presents and evaluates a series of optimizations that substantially reduce the I/O virtualization overheads in the guest domain. In combination, these mechanisms and optimizations increase the maximum throughput achieved by guest domains from 2.9Gb/s to full 10 Gigabit Ethernet link rates.\",\"PeriodicalId\":202844,\"journal\":{\"name\":\"International Conference on Virtual Execution Environments\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"123\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Virtual Execution Environments\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1508293.1508303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Virtual Execution Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1508293.1508303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Achieving 10 Gb/s using safe and transparent network interface virtualization
This paper presents mechanisms and optimizations to reduce the overhead of network interface virtualization when using the driver domain I/O virtualization model. The driver domain model provides benefits such as support for legacy device drivers and fault isolation. However, the processing overheads incurred in the driver domain to achieve these benefits limit overall I/O performance. This paper demonstrates the effectiveness of two approaches to reduce driver domain overheads. First, Xen is modified to support multi-queue network interfaces to eliminate the software overheads of packet demultiplexing and copying. Second, a grant reuse mechanism is developed to reduce memory protection overheads. These mechanisms shift the bottleneck from the driver domain to the guest domains, improving scalability and enabling significantly higher data rates. This paper also presents and evaluates a series of optimizations that substantially reduce the I/O virtualization overheads in the guest domain. In combination, these mechanisms and optimizations increase the maximum throughput achieved by guest domains from 2.9Gb/s to full 10 Gigabit Ethernet link rates.