Y. Wei, Biao Qiao, Hua-bin Wang, Mengxin Zhang, Shijun Liu, L. Tao
{"title":"基于图像序列的三维人脸对齐与重构","authors":"Y. Wei, Biao Qiao, Hua-bin Wang, Mengxin Zhang, Shijun Liu, L. Tao","doi":"10.1117/12.2644477","DOIUrl":null,"url":null,"abstract":"Existing 3D face alignment and face reconstruction methods mainly focus on the accuracy of the model. When the existing methods are applied to dynamic videos, the stability and accuracy are significantly reduced. To overcome this problem, we propose a novel regression framework that strikes a balance between accuracy and stability. First, on the basis of lightweight backbone, encoder-decoder structure is used to jointly learn expression details and detailed 3D face from video images to recover shape details and their relationship to facial expression, and dynamic regression of a small number of 3D face parameters, effectively improve the speed and accuracy. Secondly, in order to further improve the stability of face landmarks in video, a jitter loss function of multi-frame image joint learning is proposed to strengthen the correlation between frames and face landmarks in video, and reduce the difference amplitude of face landmarks between adjacent frames to reduce the jitter of face landmarks. Experiments on several challenging datasets verify the effectiveness of our method.","PeriodicalId":314555,"journal":{"name":"International Conference on Digital Image Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D face alignment and face reconstruction based on image sequence\",\"authors\":\"Y. Wei, Biao Qiao, Hua-bin Wang, Mengxin Zhang, Shijun Liu, L. Tao\",\"doi\":\"10.1117/12.2644477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing 3D face alignment and face reconstruction methods mainly focus on the accuracy of the model. When the existing methods are applied to dynamic videos, the stability and accuracy are significantly reduced. To overcome this problem, we propose a novel regression framework that strikes a balance between accuracy and stability. First, on the basis of lightweight backbone, encoder-decoder structure is used to jointly learn expression details and detailed 3D face from video images to recover shape details and their relationship to facial expression, and dynamic regression of a small number of 3D face parameters, effectively improve the speed and accuracy. Secondly, in order to further improve the stability of face landmarks in video, a jitter loss function of multi-frame image joint learning is proposed to strengthen the correlation between frames and face landmarks in video, and reduce the difference amplitude of face landmarks between adjacent frames to reduce the jitter of face landmarks. Experiments on several challenging datasets verify the effectiveness of our method.\",\"PeriodicalId\":314555,\"journal\":{\"name\":\"International Conference on Digital Image Processing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Digital Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2644477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Digital Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2644477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D face alignment and face reconstruction based on image sequence
Existing 3D face alignment and face reconstruction methods mainly focus on the accuracy of the model. When the existing methods are applied to dynamic videos, the stability and accuracy are significantly reduced. To overcome this problem, we propose a novel regression framework that strikes a balance between accuracy and stability. First, on the basis of lightweight backbone, encoder-decoder structure is used to jointly learn expression details and detailed 3D face from video images to recover shape details and their relationship to facial expression, and dynamic regression of a small number of 3D face parameters, effectively improve the speed and accuracy. Secondly, in order to further improve the stability of face landmarks in video, a jitter loss function of multi-frame image joint learning is proposed to strengthen the correlation between frames and face landmarks in video, and reduce the difference amplitude of face landmarks between adjacent frames to reduce the jitter of face landmarks. Experiments on several challenging datasets verify the effectiveness of our method.