具有规定三谱的实非自伴三对角矩阵的构造

Wei-Ru Xu, N. Bebiano, Guoliang Chen
{"title":"具有规定三谱的实非自伴三对角矩阵的构造","authors":"Wei-Ru Xu, N. Bebiano, Guoliang Chen","doi":"10.1553/etna_vol51s363","DOIUrl":null,"url":null,"abstract":"Non-selfadjoint tridiagonal matrices play a role in the discretization and truncation of the Schrödinger equation in some extensions of quantum mechanics, a research field particularly active in the last two decades. In this article, we consider an inverse eigenvalue problem that consists of the reconstruction of such a real nonselfadjoint matrix from its prescribed eigenvalues and those of two complementary principal submatrices. Necessary and sufficient conditions under which the problem has a solution are presented, and uniqueness is discussed. The reconstruction is performed by using a modified unsymmetric Lanczos algorithm, designed to solve the proposed inverse eigenvalue problem. Some illustrative numerical examples are given to test the efficiency and feasibility of our reconstruction algorithm.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the construction of real non-selfadjoint tridiagonal matrices with prescribed three spectra\",\"authors\":\"Wei-Ru Xu, N. Bebiano, Guoliang Chen\",\"doi\":\"10.1553/etna_vol51s363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-selfadjoint tridiagonal matrices play a role in the discretization and truncation of the Schrödinger equation in some extensions of quantum mechanics, a research field particularly active in the last two decades. In this article, we consider an inverse eigenvalue problem that consists of the reconstruction of such a real nonselfadjoint matrix from its prescribed eigenvalues and those of two complementary principal submatrices. Necessary and sufficient conditions under which the problem has a solution are presented, and uniqueness is discussed. The reconstruction is performed by using a modified unsymmetric Lanczos algorithm, designed to solve the proposed inverse eigenvalue problem. Some illustrative numerical examples are given to test the efficiency and feasibility of our reconstruction algorithm.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol51s363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol51s363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在量子力学的一些扩展中,非自伴三对角矩阵在Schrödinger方程的离散化和截断中起着重要作用,这是近二十年来特别活跃的一个研究领域。在本文中,我们考虑了一个由这样一个实非自伴矩阵的规定特征值和两个互补主子矩阵的规定特征值重构的逆特征值问题。给出了问题有解的充分必要条件,并讨论了唯一性。利用改进的非对称Lanczos算法进行重构,该算法旨在解决所提出的特征值反问题。算例验证了重构算法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the construction of real non-selfadjoint tridiagonal matrices with prescribed three spectra
Non-selfadjoint tridiagonal matrices play a role in the discretization and truncation of the Schrödinger equation in some extensions of quantum mechanics, a research field particularly active in the last two decades. In this article, we consider an inverse eigenvalue problem that consists of the reconstruction of such a real nonselfadjoint matrix from its prescribed eigenvalues and those of two complementary principal submatrices. Necessary and sufficient conditions under which the problem has a solution are presented, and uniqueness is discussed. The reconstruction is performed by using a modified unsymmetric Lanczos algorithm, designed to solve the proposed inverse eigenvalue problem. Some illustrative numerical examples are given to test the efficiency and feasibility of our reconstruction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信