João M. Santos, Lucas A. Thomaz, P. Assunção, L. Cruz, Luis M. N. Tavora, S. Faria
{"title":"提高4D变换编码器效率的光场视差补偿","authors":"João M. Santos, Lucas A. Thomaz, P. Assunção, L. Cruz, Luis M. N. Tavora, S. Faria","doi":"10.1109/VCIP49819.2020.9301829","DOIUrl":null,"url":null,"abstract":"Efficient light field en coders take advantage of the inherent 4D data structures to achieve high compression performance. This is accomplished by exploiting the redundancy of co-located pixels in different sub-aperture images (SAIs) through prediction and/or transform schemes to find a m ore compact representation of the signal. However, in image regions with higher disparity between SAIs, such scheme’s performance tends to decrease, thus reducing the compression efficiency. This paper introduces a reversible pre-processing algorithm for disparity compensation that operates on the SAI domain of light field data. The proposed method contributes to improve the transform efficiency of the encoder, since the disparity-compensated data presents higher correlation between co-located image blocks. The experimental results show significant improvements in the compression performance of 4D light fields, achieving Bjontegaard delta rate gains of about 44% on average for MuLE codec using the 4D discrete cosine transform, when encoding High Density Camera Arrays (HDCA) light field images.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Disparity compensation of light fields for improved efficiency in 4D transform-based encoders\",\"authors\":\"João M. Santos, Lucas A. Thomaz, P. Assunção, L. Cruz, Luis M. N. Tavora, S. Faria\",\"doi\":\"10.1109/VCIP49819.2020.9301829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient light field en coders take advantage of the inherent 4D data structures to achieve high compression performance. This is accomplished by exploiting the redundancy of co-located pixels in different sub-aperture images (SAIs) through prediction and/or transform schemes to find a m ore compact representation of the signal. However, in image regions with higher disparity between SAIs, such scheme’s performance tends to decrease, thus reducing the compression efficiency. This paper introduces a reversible pre-processing algorithm for disparity compensation that operates on the SAI domain of light field data. The proposed method contributes to improve the transform efficiency of the encoder, since the disparity-compensated data presents higher correlation between co-located image blocks. The experimental results show significant improvements in the compression performance of 4D light fields, achieving Bjontegaard delta rate gains of about 44% on average for MuLE codec using the 4D discrete cosine transform, when encoding High Density Camera Arrays (HDCA) light field images.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Disparity compensation of light fields for improved efficiency in 4D transform-based encoders
Efficient light field en coders take advantage of the inherent 4D data structures to achieve high compression performance. This is accomplished by exploiting the redundancy of co-located pixels in different sub-aperture images (SAIs) through prediction and/or transform schemes to find a m ore compact representation of the signal. However, in image regions with higher disparity between SAIs, such scheme’s performance tends to decrease, thus reducing the compression efficiency. This paper introduces a reversible pre-processing algorithm for disparity compensation that operates on the SAI domain of light field data. The proposed method contributes to improve the transform efficiency of the encoder, since the disparity-compensated data presents higher correlation between co-located image blocks. The experimental results show significant improvements in the compression performance of 4D light fields, achieving Bjontegaard delta rate gains of about 44% on average for MuLE codec using the 4D discrete cosine transform, when encoding High Density Camera Arrays (HDCA) light field images.