等变上同调的一般性质

L. Tu
{"title":"等变上同调的一般性质","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.15","DOIUrl":null,"url":null,"abstract":"This chapter assesses the general properties of equivariant cohomology. Both the homotopy quotient and equivariant cohomology are functorial constructions. Equivariant cohomology is particularly simple when the action is free. Throughout the chapter, by a G-space, it means a left G-space. Let G be a topological group and consider the category of G-spaces and G-maps. A morphism of left G-spaces is a G-equivariant map (or G-map). Such a morphism induces a map of homotopy quotients. The map in turn induces a ring homomorphism in cohomology. The chapter then looks at the coefficient ring of equivariant cohomology, as well as the equivariant cohomology of a disjoint union.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"General Properties of Equivariant Cohomology\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter assesses the general properties of equivariant cohomology. Both the homotopy quotient and equivariant cohomology are functorial constructions. Equivariant cohomology is particularly simple when the action is free. Throughout the chapter, by a G-space, it means a left G-space. Let G be a topological group and consider the category of G-spaces and G-maps. A morphism of left G-spaces is a G-equivariant map (or G-map). Such a morphism induces a map of homotopy quotients. The map in turn induces a ring homomorphism in cohomology. The chapter then looks at the coefficient ring of equivariant cohomology, as well as the equivariant cohomology of a disjoint union.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章评估了等变上同调的一般性质。同伦商和等变上同调都是泛函结构。当作用是自由的时候,等变上同调特别简单。在本章中,g空间指的是左g空间。设G是一个拓扑群,考虑G空间和G映射的范畴。左g空间的态射是一个g等变映射(或g映射)。这样的态射引出了一个同伦商的映射。映射又在上同调中引出一个环同态。然后,本章讨论了等变上同调的系数环,以及不相交并的等变上同调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
General Properties of Equivariant Cohomology
This chapter assesses the general properties of equivariant cohomology. Both the homotopy quotient and equivariant cohomology are functorial constructions. Equivariant cohomology is particularly simple when the action is free. Throughout the chapter, by a G-space, it means a left G-space. Let G be a topological group and consider the category of G-spaces and G-maps. A morphism of left G-spaces is a G-equivariant map (or G-map). Such a morphism induces a map of homotopy quotients. The map in turn induces a ring homomorphism in cohomology. The chapter then looks at the coefficient ring of equivariant cohomology, as well as the equivariant cohomology of a disjoint union.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信