{"title":"聚四氟乙烯/Sr2TiMnO6 (STMO)复合材料的介电和热性能","authors":"A. Ashokbabu, P. Thomas","doi":"10.1109/CATCON47128.2019.CN0093","DOIUrl":null,"url":null,"abstract":"Development of materials with high dielectric permittivity is very much important for the miniaturization of electronic devices. From that perspective, polytetrafluoroethylene (PTFE) composites with up to 15 weight% Sr2TiMnO6 (STMO) ceramics were prepared using hot isostatic pressing method and characterized for their dielectric and thermal behavior. X-ray diffraction patterns showed the appearance of peaks corresponding to both PTFE and STMO in their composites, however, the intensities of the peaks were dependent on the loading of STMO. Thermal stability of the composites was superior to that of pure PTFE. Enhancement in the dielectric properties of PTFE was obtained from the addition of STMO. These composites with high permittivity can be explored further for their possible use in capacitor applications.","PeriodicalId":183797,"journal":{"name":"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dielectric and Thermal Behavior of PTFE/Sr2TiMnO6 (STMO) Composites\",\"authors\":\"A. Ashokbabu, P. Thomas\",\"doi\":\"10.1109/CATCON47128.2019.CN0093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Development of materials with high dielectric permittivity is very much important for the miniaturization of electronic devices. From that perspective, polytetrafluoroethylene (PTFE) composites with up to 15 weight% Sr2TiMnO6 (STMO) ceramics were prepared using hot isostatic pressing method and characterized for their dielectric and thermal behavior. X-ray diffraction patterns showed the appearance of peaks corresponding to both PTFE and STMO in their composites, however, the intensities of the peaks were dependent on the loading of STMO. Thermal stability of the composites was superior to that of pure PTFE. Enhancement in the dielectric properties of PTFE was obtained from the addition of STMO. These composites with high permittivity can be explored further for their possible use in capacitor applications.\",\"PeriodicalId\":183797,\"journal\":{\"name\":\"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CATCON47128.2019.CN0093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 4th International Conference on Condition Assessment Techniques in Electrical Systems (CATCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCON47128.2019.CN0093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dielectric and Thermal Behavior of PTFE/Sr2TiMnO6 (STMO) Composites
Development of materials with high dielectric permittivity is very much important for the miniaturization of electronic devices. From that perspective, polytetrafluoroethylene (PTFE) composites with up to 15 weight% Sr2TiMnO6 (STMO) ceramics were prepared using hot isostatic pressing method and characterized for their dielectric and thermal behavior. X-ray diffraction patterns showed the appearance of peaks corresponding to both PTFE and STMO in their composites, however, the intensities of the peaks were dependent on the loading of STMO. Thermal stability of the composites was superior to that of pure PTFE. Enhancement in the dielectric properties of PTFE was obtained from the addition of STMO. These composites with high permittivity can be explored further for their possible use in capacitor applications.