对电力客户群体进行分类,进行个性化电价方案设计

Tao Chen, Kun Qian, A. Mutanen, Bjcorn Schuller, P. Järventausta, Wencong Su
{"title":"对电力客户群体进行分类,进行个性化电价方案设计","authors":"Tao Chen, Kun Qian, A. Mutanen, Bjcorn Schuller, P. Järventausta, Wencong Su","doi":"10.1109/NAPS.2017.8107189","DOIUrl":null,"url":null,"abstract":"This paper introduces classification of electricity residential customers into different groups associated with individualized electricity price schemes, such as time-of-use (TOU) or critical peak pricing (CPP). We use an unsupervised learning method, K-means, assisted by a dimensionality reduction technique and an innovative supervised learning method, extreme learning machine (ELM), to cluster daily load profiles based on hourly AMI measurements. Then, the achieved typical daily load profiles are analyzed and utilized for the design of an electricity price scheme for every subgroup based on symbolic aggregate approximation (SAX). These carefully designed and customized retail price schemes can provide a potential tool for price-based and incentive-based demand response in the Smart Grid context.","PeriodicalId":296428,"journal":{"name":"2017 North American Power Symposium (NAPS)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Classification of electricity customer groups towards individualized price scheme design\",\"authors\":\"Tao Chen, Kun Qian, A. Mutanen, Bjcorn Schuller, P. Järventausta, Wencong Su\",\"doi\":\"10.1109/NAPS.2017.8107189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces classification of electricity residential customers into different groups associated with individualized electricity price schemes, such as time-of-use (TOU) or critical peak pricing (CPP). We use an unsupervised learning method, K-means, assisted by a dimensionality reduction technique and an innovative supervised learning method, extreme learning machine (ELM), to cluster daily load profiles based on hourly AMI measurements. Then, the achieved typical daily load profiles are analyzed and utilized for the design of an electricity price scheme for every subgroup based on symbolic aggregate approximation (SAX). These carefully designed and customized retail price schemes can provide a potential tool for price-based and incentive-based demand response in the Smart Grid context.\",\"PeriodicalId\":296428,\"journal\":{\"name\":\"2017 North American Power Symposium (NAPS)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 North American Power Symposium (NAPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAPS.2017.8107189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 North American Power Symposium (NAPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAPS.2017.8107189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文介绍了住宅用电用户的分类,并结合个体化电价方案,如分时电价(TOU)或临界峰电价(CPP)。我们使用无监督学习方法K-means,辅以降维技术和创新的监督学习方法极限学习机(ELM),基于每小时AMI测量对每日负载概况进行聚类。然后,分析了获得的典型日负荷分布,并基于符号聚合近似(SAX)设计了每个子组的电价方案。这些精心设计和定制的零售价格方案可以为智能电网环境下基于价格和基于激励的需求响应提供潜在的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of electricity customer groups towards individualized price scheme design
This paper introduces classification of electricity residential customers into different groups associated with individualized electricity price schemes, such as time-of-use (TOU) or critical peak pricing (CPP). We use an unsupervised learning method, K-means, assisted by a dimensionality reduction technique and an innovative supervised learning method, extreme learning machine (ELM), to cluster daily load profiles based on hourly AMI measurements. Then, the achieved typical daily load profiles are analyzed and utilized for the design of an electricity price scheme for every subgroup based on symbolic aggregate approximation (SAX). These carefully designed and customized retail price schemes can provide a potential tool for price-based and incentive-based demand response in the Smart Grid context.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信