误差超出最小距离的概率

Yuval Cassuto, Jehoshua Bruck
{"title":"误差超出最小距离的概率","authors":"Yuval Cassuto, Jehoshua Bruck","doi":"10.1109/ISIT.2004.1365561","DOIUrl":null,"url":null,"abstract":"The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Miscorrection probability beyond the minimum distance\",\"authors\":\"Yuval Cassuto, Jehoshua Bruck\",\"doi\":\"10.1109/ISIT.2004.1365561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

列表解码器的纠错概率是解码器在其解码范围内至少具有一个非因果码字的概率。当使用列表解码器作为常规解码器时,评估这个概率很重要,因为在这种情况下,我们要求列表最多包含一个码字来处理大多数错误。误差修正的下界是主要结果。证明的关键因素是一般q元分组码的列表大小的一个新的组合上界。这个界比已知的大字母表上的界更紧,它被证明非常接近里德-所罗门码的代数界。最后讨论了线性MDS码的两个已知误码概率上界,并将它们统一起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Miscorrection probability beyond the minimum distance
The miscorrection probability of a list decoder is the probability that the decoder will have at least one noncausal codeword in its decoding sphere. Evaluating this probability is important when using a list-decoder as a conventional decoder since in that case we require the list to contain at most one codeword for most of the errors. A lower bound on the miscorrection is the main result. The key ingredient in the proof is a new combinatorial upper bound on the list-size for a general q-ary block code. This bound is tighter than the best known on large alphabets, and it is shown to be very close to the algebraic bound for Reed-Solomon codes. Finally we discuss two known upper bounds on the miscorrection probability and unify them for linear MDS codes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信