{"title":"基于图的高效贝叶斯推荐方法","authors":"Ramon Lopes, R. Assunção, Rodrygo L. T. Santos","doi":"10.1145/2959100.2959132","DOIUrl":null,"url":null,"abstract":"Short-length random walks on the bipartite user-item graph have recently been shown to provide accurate and diverse recommendations. Nonetheless, these approaches suffer from severe time and space requirements, which can be alleviated via random walk sampling, at the cost of reduced recommendation quality. In addition, these approaches ignore users' ratings, which further limits their expressiveness. In this paper, we introduce a computationally efficient graph-based approach for collaborative filtering based on short-path enumeration. Moreover, we propose three scoring functions based on the Bayesian paradigm that effectively exploit distributional aspects of the users' ratings. We experiment with seven publicly available datasets against state-of-the-art graph-based and matrix factorization approaches. Our empirical results demonstrate the effectiveness of the proposed approach, with significant improvements in most settings. Furthermore, analytical results demonstrate its efficiency compared to other graph-based approaches.","PeriodicalId":315651,"journal":{"name":"Proceedings of the 10th ACM Conference on Recommender Systems","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Efficient Bayesian Methods for Graph-based Recommendation\",\"authors\":\"Ramon Lopes, R. Assunção, Rodrygo L. T. Santos\",\"doi\":\"10.1145/2959100.2959132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Short-length random walks on the bipartite user-item graph have recently been shown to provide accurate and diverse recommendations. Nonetheless, these approaches suffer from severe time and space requirements, which can be alleviated via random walk sampling, at the cost of reduced recommendation quality. In addition, these approaches ignore users' ratings, which further limits their expressiveness. In this paper, we introduce a computationally efficient graph-based approach for collaborative filtering based on short-path enumeration. Moreover, we propose three scoring functions based on the Bayesian paradigm that effectively exploit distributional aspects of the users' ratings. We experiment with seven publicly available datasets against state-of-the-art graph-based and matrix factorization approaches. Our empirical results demonstrate the effectiveness of the proposed approach, with significant improvements in most settings. Furthermore, analytical results demonstrate its efficiency compared to other graph-based approaches.\",\"PeriodicalId\":315651,\"journal\":{\"name\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2959100.2959132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2959100.2959132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Bayesian Methods for Graph-based Recommendation
Short-length random walks on the bipartite user-item graph have recently been shown to provide accurate and diverse recommendations. Nonetheless, these approaches suffer from severe time and space requirements, which can be alleviated via random walk sampling, at the cost of reduced recommendation quality. In addition, these approaches ignore users' ratings, which further limits their expressiveness. In this paper, we introduce a computationally efficient graph-based approach for collaborative filtering based on short-path enumeration. Moreover, we propose three scoring functions based on the Bayesian paradigm that effectively exploit distributional aspects of the users' ratings. We experiment with seven publicly available datasets against state-of-the-art graph-based and matrix factorization approaches. Our empirical results demonstrate the effectiveness of the proposed approach, with significant improvements in most settings. Furthermore, analytical results demonstrate its efficiency compared to other graph-based approaches.