二元值反向传播的光学矩阵-矢量实现

S. A. Brodsky, C. Guest
{"title":"二元值反向传播的光学矩阵-矢量实现","authors":"S. A. Brodsky, C. Guest","doi":"10.1364/optcomp.1991.me8","DOIUrl":null,"url":null,"abstract":"Optical implementations of neural networks can combine advantages of neural network adaptive parallel processing and optical free-space connectivity. Binary valued Backpropagation1, a supervised learning algorithm related to standard Backpropagation2, significantly reduces interconnection storage and computation requirements. This implementation of binary valued Backpropagation used optical matrix-vector multiplication3 to represent the forward information flow between network layers. Previous analog optical network memory systems have been described4.","PeriodicalId":302010,"journal":{"name":"Optical Computing","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optical Matrix-Vector Implementation of Binary Valued Backpropagation\",\"authors\":\"S. A. Brodsky, C. Guest\",\"doi\":\"10.1364/optcomp.1991.me8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical implementations of neural networks can combine advantages of neural network adaptive parallel processing and optical free-space connectivity. Binary valued Backpropagation1, a supervised learning algorithm related to standard Backpropagation2, significantly reduces interconnection storage and computation requirements. This implementation of binary valued Backpropagation used optical matrix-vector multiplication3 to represent the forward information flow between network layers. Previous analog optical network memory systems have been described4.\",\"PeriodicalId\":302010,\"journal\":{\"name\":\"Optical Computing\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/optcomp.1991.me8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/optcomp.1991.me8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

神经网络的光学实现可以结合神经网络自适应并行处理和光自由空间连接的优点。二值Backpropagation1是一种与标准Backpropagation2相关的监督学习算法,显著降低了互连存储和计算需求。这种二值反向传播的实现使用光矩阵向量乘法3来表示网络层之间的前向信息流。以前的模拟光网络存储系统已经描述过了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optical Matrix-Vector Implementation of Binary Valued Backpropagation
Optical implementations of neural networks can combine advantages of neural network adaptive parallel processing and optical free-space connectivity. Binary valued Backpropagation1, a supervised learning algorithm related to standard Backpropagation2, significantly reduces interconnection storage and computation requirements. This implementation of binary valued Backpropagation used optical matrix-vector multiplication3 to represent the forward information flow between network layers. Previous analog optical network memory systems have been described4.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信