在部分无知的情况下做决定

F. Voorbraak
{"title":"在部分无知的情况下做决定","authors":"F. Voorbraak","doi":"10.1109/EURBOT.1997.633576","DOIUrl":null,"url":null,"abstract":"We study the problem of making decisions under partial ignorance, or partially quantified uncertainty. This problem arises in many applications in robotics and AI, and it has not yet got the attention it deserves. The traditional decision rules of decision under risk and under strict uncertainty (or complete ignorance) can naturally be extended to the more general case of decision under partial ignorance. We propose partial probability theory (PPT) for representing partial ignorance, and we discuss the extension to PPT of expected utility maximization. We argue that decision analysis should not be exclusively focused on optimizing but pay more serious attention to finding satisfactory actions, and to reasoning with assumptions. The extended minimax regret decision rule appears to be an important rule for satisficing.","PeriodicalId":129683,"journal":{"name":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Deciding under partial ignorance\",\"authors\":\"F. Voorbraak\",\"doi\":\"10.1109/EURBOT.1997.633576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the problem of making decisions under partial ignorance, or partially quantified uncertainty. This problem arises in many applications in robotics and AI, and it has not yet got the attention it deserves. The traditional decision rules of decision under risk and under strict uncertainty (or complete ignorance) can naturally be extended to the more general case of decision under partial ignorance. We propose partial probability theory (PPT) for representing partial ignorance, and we discuss the extension to PPT of expected utility maximization. We argue that decision analysis should not be exclusively focused on optimizing but pay more serious attention to finding satisfactory actions, and to reasoning with assumptions. The extended minimax regret decision rule appears to be an important rule for satisficing.\",\"PeriodicalId\":129683,\"journal\":{\"name\":\"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURBOT.1997.633576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Second EUROMICRO Workshop on Advanced Mobile Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1997.633576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们研究在部分无知或部分量化的不确定性下做出决策的问题。这个问题出现在机器人和人工智能的许多应用中,但尚未得到应有的重视。传统的风险和严格不确定性(或完全无知)情况下的决策规则自然可以推广到部分无知情况下的决策。我们提出了部分无知的部分概率论,并讨论了期望效用最大化的部分概率论的扩展。我们认为,决策分析不应该只关注优化,而应该更认真地关注寻找令人满意的行动,以及用假设进行推理。扩展的极大极小后悔决策规则是解决这一问题的重要规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deciding under partial ignorance
We study the problem of making decisions under partial ignorance, or partially quantified uncertainty. This problem arises in many applications in robotics and AI, and it has not yet got the attention it deserves. The traditional decision rules of decision under risk and under strict uncertainty (or complete ignorance) can naturally be extended to the more general case of decision under partial ignorance. We propose partial probability theory (PPT) for representing partial ignorance, and we discuss the extension to PPT of expected utility maximization. We argue that decision analysis should not be exclusively focused on optimizing but pay more serious attention to finding satisfactory actions, and to reasoning with assumptions. The extended minimax regret decision rule appears to be an important rule for satisficing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信